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Abstract 

Skin cancer (SC) is a significant public health issue, with increasing incidence rates globally. 

Although environmental factors such as ultraviolet (UV) exposure are recognized risk factors, the 

impact of metabolites on SC development has not been thoroughly examined. This study seeks to 

explore the causal association between metabolites and SC risks using a Mendelian randomization 

(MR) approach. Our analysis revealed a total of 76 metabolites associated with SC risk. Of them, 

leucine to N-palmitoyl-sphingosine ratio, glycerol to palmitoylcarnitine ratio, oleoyl-linoleoyl-

glycerol levels, and hypotaurine-to-taurine ratio were strongly associated with SC. Notably, leucine 

to N-palmitoyl-sphingosine ratio and glycerol to palmitoylcarnitine ratio were linked to increased risk 

factors for SC. However, oleoyl-linoleoyl-glycerol levels and hypotaurine-to-taurine ratio served as 

the protective indicators of SC. This study highlights the potential role of metabolites in skin cancer 

etiology, suggesting that metabolic factors may serve as important targets for prevention and risk 

assessment strategies. 

 

Introduction 

Skin cancer (SC) is one of the most severe health challenges of this decade, currently ranking as 

the fifth most prevalent type of cancer worldwide.1 It is projected to surpass heart disease as the 

leading cause of death and a significant obstacle to increasing life expectancy in the coming years.2 

SC is primarily classified into three types: basal cell carcinoma, squamous cell carcinoma, and 

melanoma.2 While environmental factors, especially ultraviolet radiation (UVR) exposure, are well-

established risk factors,3 recent research has begun to uncover the potential role of metabolic 

processes in SC pathogenesis. Specifically, certain metabolites may influence tumor development 

and progression.4 

Metabolites, the end products of cellular metabolism, play essential roles in various biological 

functions, including energy production, signaling, and cellular homeostasis. Emerging evidence 

suggests that alterations in metabolite levels could be linked to cancer risk and progression.5 Notably, 

specific lipid metabolites, such as prostaglandins and leukotrienes, significantly contribute to SC 

development by modulating the inflammatory response.6 Metabolites associated with lipid, amino 

acid, and carbohydrate metabolism have been implicated in various cancers, affecting critical 

pathways regulating cell proliferation, inflammation, and apoptosis.7  



Despite these associations, establishing a causal relationship between metabolites and SC 

remains complex due to confounding factors and the potential for reverse causation.8 Traditional 

observational studies often struggle to disentangle these intricacies, underscoring the need for more 

robust methodological approaches.9 Mendelian randomization (MR) offers a promising alternative 

by employing genetic variants as instrumental variables (IVs) to assess the causal effects of exposures, 

such as the effect of altered metabolite levels on health outcomes.10 This method effectively 

minimizes confounding and reverse causation, providing clearer insights into the causal pathways 

involved. 

In this study, we aim to investigate the causal association between 1400 metabolites and SC 

phenotypes using an MR framework. By leveraging publicly available genetic data and metabolite 

measurements, we will identify potential metabolic pathways that may contribute to SC risks. Our 

findings can enhance understanding of the biological mechanisms underlying SC and inform 

preventive strategies targeting metabolic pathways. 

 

Materials and Methods 

Study design 

We assessed the cause-and-effect relationship between 1400 types of metabolites and SC 

phenotypes using two-sample MR analyses, which leverage genetic variations as proxies for risk 

factors. To ensure reliable causal inference, IVs in MR must satisfy three key assumptions: i) a direct 

association must exist between the genetic variation and the exposure; ii) the genetic variant should 

not be associated with any confounders that could influence the relationship between the exposure 

and the outcome; and iii) the effect of the genetic variation on the outcome must operate exclusively 

through the exposure, avoiding alternative pathways.  

Specifically, our MR analyses adhered to these major assumptions. First, there should be a strong 

correlation between the IV (G) and the exposure factor (P). Second, there should be no direct 

correlation between G and the outcome variable (Y), ensuring that G does not influence Y through 

any pathway other than P. Additionally, G should not be correlated with known confounding factors 

(U). To meet the second assumption, we excluded points with p-values less than 1×105 from the 

outcome during our MR analysis. To address the third assumption, we employed methodologies, such 

as MR Egger and MR-PRESSO, to test for pleiotropy and found no evidence of such effects in our 



results. Furthermore, we reviewed the Genome-Wide Association Study (GWAS) catalog for relevant 

single nucleotide polymorphisms (SNPs) and eliminated those with pleiotropic effects prior to the 

MR analysis. While our study indicates a potential association, further large-scale research is 

necessary to explore this relationship in depth (Figure 1). 

 

Data sources for exposure and outcome 

The statistical summary of GWAS data for each metabolite is publicly available from the 

European GWAS repository (accession numbers: GCST90199621-90201020) at 

https://gwas.mrcieu.ac.uk/. Specifically, we selected the United Kingdom (UK) Biobank SAIGE 

(ukb-saige-172) dataset, using “skin cancer” as a keyword for identification. This comprehensive 

GWAS database, encompassing a wide range of genetic variations and their associations with various 

traits and diseases, serves as a valuable resource for researchers and clinicians aiming to understand 

the genetic underpinnings of complex traits and diseases. Subsequently, we downloaded relevant data 

from the UK Biobank PheWeb database (https://pheweb.org/UKB-SAIGE/), focusing on SC, which 

included a cohort of 408,823 European individuals (n=13,752 cases and 395,071 controls) for SC. 

The UK Biobank represents a large-scale biomedical database that compiles genetic, health, and 

lifestyle information from over 500,000 participants across the UK. Its goal is to enhance the 

prevention, diagnosis, and treatment of various diseases by facilitating research into the relationships 

between genetic factors and health outcomes. GWAS typically involves collecting and analyzing 

DNA samples from participants to identify genetic variations associated with specific traits or 

diseases. The biological materials used in these studies often include DNA extracted from blood, 

saliva, or other tissues. Researchers isolate DNA from these samples and apply genotyping methods 

to pinpoint genetic variations, such as SNPs, that may be linked to the trait or disease under 

investigation. 

 

Instrument selection 
Given the substantial number of SNPs demonstrating genome-wide significance (p<5×10-8) for 

metabolite traits, we implemented stricter correlation thresholds (p<5×10-9) for selecting genetic IVs. 

These IVs were categorized using the reference panel for Linkage Disequilibrium (LD) from the 1000 

Genomes Project, applying a threshold of R2<0.001 within a distance of 1,000 kilobases (kb). Due to 

the relatively small size of the GWAS data for metabolites, we also employed a p-value cutoff of 



5×10-8 along with a more lenient clustering threshold (R2<0.001 at a distance of 1,000 kb). To ensure 

the robustness of our analysis, we selected IVs with F-statistics greater than 10, designating them as 

strong instruments for further investigation. These IVs were extracted from summary statistics related 

to SC outcomes, with any SNPs exhibiting potential pleiotropic effects (p<10-5) on SC being excluded, 

following established methodologies from prior research. To maintain consistency in our analysis, we 

synchronized SNPs between the exposure and outcome datasets, ensuring uniform effect estimates 

for the same effect allele. 

 

Statistical analysis 

In our study, we utilized a range of genetic variants as IVs rather than relying solely on an allele 

score. This approach allowed us to rigorously test key assumptions, identify potential pleiotropy, and 

conduct more effective sensitivity and multivariable MR analyses. We employed four distinct MR 

methodologies: inverse variance weighted (IVW) using a random-effects model, weighted median, 

MR-Egger, and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO). These methodologies 

helped assess the consistency of our findings under varying assumptions regarding heterogeneity and 

pleiotropy, with the IVW method serving as the primary analysis framework for all four sets of IVs. 

Heterogeneity was quantified using Cochran’s Q statistic. 

Our study also included analyses under more stringent conditions. While the IVW method 

assumes that all genetic variants are valid, it may be biased if a substantial number of SNPs are 

influenced by horizontal pleiotropy. In contrast, the weighted median approach is robust when less 

than 50% of variants exhibit horizontal pleiotropy, assuming that most genetic variants were valid. 

When over 50% of variants are affected by horizontal pleiotropy, we assessed the strength of our 

genetic instruments using F-statistics, where a mean F-statistic of less than 10 indicates weak IVs.  

Furthermore, the MR-Egger method was applied to evaluate potential directional pleiotropy, 

with a significant intercept suggesting directional pleiotropy. Additionally, the MR-PRESSO method 

was implemented to minimize heterogeneity in causal effect estimates by excluding 

disproportionately influential SNPs (NbDistribution=1,500). In addition, we conducted Steiger-

filtering analyses to identify and eliminate genetic variants that were more strongly associated with 

the outcome than with the exposure, indicating possible reverse causality. 

All statistical analyses were performed using R version 4.3.1 (R Foundation) and specific R 

packages, including “TwoSampleMR” and “MR”, were tailored for MR analysis. 

 

 

 



Results 

Causal association between metabolites and SC pathogenesis 

To investigate the causal effect of various metabolites on SC, we conducted a two-sample MR 

analysis employing IVW as the primary method. Our findings revealed significant associations 

between 76 metabolites and SC risks (Figure 2). Notably, SC risk was strongly associated with the 

leucine to N-palmitoyl-sphingosine ratio [odds ratio (OR)=1.137, 95% confidence interval 

(CI)=1.036-1.248, p=0.007], the glycerol to palmitoylcarnitine ratio (OR=1.132, 95% CI=1.030-

1.245, p=0.010), oleoyl-linoleoyl-glycerol levels (OR=0.889, 95% CI=0.829-0.953, p=0.001), and 

the hypotaurine to taurine ratio (OR=0.893, 95% CI=0.834-0.957, p=0.001) (Figure 3). We also 

performed a sensitivity analysis to assess the robustness of our findings. While some heterogeneity 

was observed, indicated by significant results from Cochran’s Q test (p<0.05), the causal estimates 

remained stable when analyzed using the random-effects IVW model (Supplementary Table 1). The 

p-values for the MR-Egger intercept were above 0.05, indicating no significant pleiotropic effects 

(Supplementary Table 2). Furthermore, we evaluated the data through scatter plots (Figure 4), funnel 

plots (Figure 5), and leave-one-out plots (Figure 6), which helped mitigate the potential influence of 

outliers and horizontal pleiotropy on the key metabolites identified. 

 

Discussion 

Cancer has long been viewed as a hereditary disease linked to mutations in oncogenes and tumor-

suppressor genes. However, a growing body of research indicates that metabolic disturbances in 

cancer cells may be not only a hallmark of the disease but also a fundamental cause.11 In cancer 

patients, various metabolic abnormalities often co-exist, exemplified by the Warburg effect, which 

demonstrates that cancer cells consume significantly more glucose than normal cells.12 Additionally, 

tumor cells can enhance biofilm formation and increase membrane lipid saturation through metabolic 

reprogramming, promoting rapid proliferation and tumor progression.13 With the recent 

advancements in metabolomics, research into cancer-related metabolites, particularly blood 

metabolites, has deepened. These metabolites are easily accessible and detectable, offering potential 

for early cancer screening and prevention. Understanding the relationship between blood metabolites 

and cancer and their biological mechanisms can help identify new therapeutic targets. 



In our study, we investigated the correlation between 76 metabolites and SC risks through MR 

and identified 39 metabolites that showed a significant positive correlation with SC risk, with the 

strongest associations being the leucine to N-palmitoyl-sphingosine and glycerol to 

palmitoylcarnitine ratio. Conversely, 37 metabolites were significantly negatively correlated with SC, 

serving as protective factors, particularly oleoyl-linoleoyl-glycerol levels and the hypotaurine-to-

taurine ratio.  

Leucine, a branched-chain amino acid known for its bulky side chains, plays a critical role in 

cancer metabolism. Our findings suggest that a higher leucine to N-palmitoyl-sphingosine ratio 

correlates with increased SC risks; as blood leucine levels rise and N-palmitoyl-sphingosine levels 

decrease, the risk of developing SC increases. This aligns with previous research showing that 

circulating leucine levels are positively associated with squamous cell lung cancer risk.14 Moreover, 

studies using mouse models of breast cancer and melanoma have found that microbiota from high-

fat diet (HFD) release abundant leucine, which can activate the rapamycin complex 1 (mTORC1) 

signaling pathway in myeloid progenitor cells, promoting differentiation into polymorphonuclear 

myeloid-derived suppressor cell (PMN-MDSC), a phenomenon linked to poor clinical outcomes.15 

Leucine is a crucial element of the mTORC1 signaling pathway, which promotes protein translation 

and cell proliferation.16 However, dysregulation of the PI3K/Akt/mTOR pathway and related 

components is frequently observed in various cancers, including melanoma and non-melanoma SC 

types.17 N-palmitoyl-sphingosine, a major component of ceramide, constitutes 50-63% of total 

sphingomyelin and plays various roles in cellular signaling, including apoptosis, proliferation, cell 

cycle arrest, cell differentiation, and induction of cytokine synthesis.18 While elevated ceramide levels 

have been associated with adverse cardiovascular events, the relationship between N-palmitoyl-

sphingosine and cancer remains less explored. Only one study performed a comprehensive 

metabolomic analysis of fecal samples from patients with advanced adenomas and colorectal cancer. 

It concluded that a composite indicator containing lactosyl-N-palmitoyl-sphingosine would be 

potentially valuable for the future diagnosis and prevention of colorectal cancer,19 highlighting the 

need for further research into its role in SC pathogenesis. We also found that an elevated glycerol to 

palmitoylcarnitine ratio is a risk factor for SC. Elevated glycerol and reduced palmitoylcarnitine 

levels in the blood may promote SC. Glycerol is a small molecule that serves as a key intermediary 

in carbohydrate and lipid metabolism. It is primarily stored in adipose tissue as the backbone for 



triglycerides (TG). In adipose tissue, glycerol can be effluxed via aquaporin 7 (AQP7), and the liver 

takes up glycerol via AQP9.20 In a study by Zheng Li et al., the expression of AQP3 was positively 

associated with the glycerol level in human gastric cancer tissues. When the glycerol level was 

decreased, the cellular uptake was reduced, resulting in compromised energy production and impaired 

proliferation of cancer cells.21 Research has shown that during the early stages of liver cancer, glycerol 

metabolism is reprogrammed to enhance its utilization for gluconeogenesis, providing a critical 

energy source for hepatocellular carcinoma cells.22 However, the role of glycerol in promoting skin 

cancer development has not been thoroughly investigated. We hypothesize that elevated glycerol 

levels in the body may support the rapid proliferation of skin cancer cells. Acylcarnitines, which are 

intermediates in fatty acid oxidation, can accumulate when there is metabolic dysfunction, 

particularly due to poor integration between β-oxidation and the tricarboxylic acid (TCA) cycle. 

Among these, palmitic acid-derived palmitoylcarnitine constitutes about 80% of the total fatty acids 

synthesized in cells.23 Previous studies have reported significantly elevated levels of 

palmitoylcarnitine in prostate cancer tissues, where high concentrations are associated with increased 

expression and secretion of the pro-inflammatory cytokine IL-6, potentially promoting cancer 

progression.24 Interestingly, research by Patrick C. Turnbull et al. demonstrated that 

palmitoylcarnitine reduced the survival of colorectal cancer cells (HT29 and HCT116) by inhibiting 

their ability to mitigate oxidative stress through glutathione-redox coupling, thus sensitizing them to 

elevated hydrogen peroxide levels, which have a cancer-suppressive effect.25 Our study found that 

palmitoylcarnitine acts as a protective factor against skin cancer, aligning with Turnbull's findings. 

However, the precise mechanism remains unclear, suggesting that the effects of palmitoylcarnitine 

may be bidirectional and vary across different cancer types. 

We found that elevated levels of oleoyl-linoleoyl-glycerol and an increased hypotaurine-to-

taurine ratio are protective factors against skin cancer, with higher concentrations of both associated 

with a lower incidence of the disease. Although oleoyl-linoleoyl-glycerol has been less extensively 

studied, it is suggested to be linked to the sodium-glucose cotransporter protein 2 (SGLT2), and it 

may also help reduce the risk of major depression.26 Hypotaurine, a sulfur amino acid, is oxidized to 

taurine through a non-enzymatic reaction when it interacts with reactive oxygen species (ROS), such 

as hydroxyl radicals.27 This process gives hypotaurine potent hydroxyl radical scavenging 

properties.28 Skin cancer is primarily caused by cumulative exposure to UVR, which generates ROS 



and contributes to oxidative damage, leading to cell death and potentially carcinogenesis. The 

protective role of hypotaurine against skin cancer may be attributed to its antioxidant activity.29 

Previous studies have demonstrated that hypotaurine can exert antitumor effects by enhancing 

antioxidant capacity, modulating immune responses, and inducing apoptosis in tumor cells.30 Our 

study found that the risk of developing skin cancer decreased when the hypotaurine-to-taurine ratio 

increased. Since taurine is produced from the oxidation of hypotaurine, a decrease in hypotaurine 

coincides with an increase in taurine, resulting in a lower hypotaurine-to-taurine ratio associated with 

an increased risk of skin cancer. We speculate that hypotaurine may have stronger anticancer 

properties than taurine, and its conversion to taurine could weaken the overall anticancer effect. This 

hypothesis warrants further experimental investigation. 
 

Strengths and limitations 

Our MR study aimed to assess the causal correlation between altered metabolite levels and SC 

risks using a large-scale GWAS and UK Biobank database. This approach effectively addresses the 

limitations of traditional observational studies by minimizing confounding factors and reducing the 

risk of reverse causality. Additionally, MR mitigates the issues of representativeness and feasibility 

that often arise in randomized controlled trials (RCTs). However, this study has several limitations. 

First, we used non-fasting plasma samples for metabolomics profiling. While we adjusted for the time 

since the last meal or beverage, some residual variability may still exist. Second, our analysis 

concentrated on gene-metabolite pairs deemed most relevant based on existing expression data and 

biological understanding, particularly those involving effector genes. Nonetheless, the potential 

significance of other metabolites or ratios with high heritability related to SC should not be 

overlooked. Future research should incorporate additional expression data and metabolic insights to 

identify effector genes for these other metabolites and ratios. Third, the MR analysis faced limitations 

as most metabolites and metabolite ratios were correlated with only a single IV. This constraint limited 

the applicability of common MR sensitivity tests, such as MR-Egger, which require multiple IVs. 

Nevertheless, our approach reduced the risk of horizontal pleiotropy by utilizing IVs closely linked 

to effector genes that influence metabolite levels. We also performed manual assessments of 

metabolic pleiotropy, excluding IVs correlated with multiple metabolites that were not part of the 

same metabolic pathways. While these measures helped minimize potential biases, we recognize that 



some may persist due to limitations in metabolome profiling and gaps in databases of metabolite-

protein interactions. Further research with a more comprehensive assessment of the metabolome is 

essential for a better understanding of the genetic influences on metabolites. Lastly, this study 

primarily involved elderly individuals of European descent. Exploring the effects of the identified 

genetic variations on metabolites and their ratios across diverse demographic groups represents a 

promising direction for future research. 

 

Conclusions 

In summary, this study provides evidence for a causal association between specific metabolites and 

SC risks using MR approaches. The findings highlight the role of metabolic factors in SC etiology 

and suggest that targeting modifiable metabolites may offer opportunities for prevention. Further 

research is needed to validate these associations and explore their clinical implications, ultimately 

contributing to improved SC risk assessment and management strategies. 
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Figure 1. Study Design Flowchart. The first assumption is that the instrumental variables strongly 

correlate with the exposure. The second assumption posits that these instrumental variables are not 

associated with confounding factors. The third assumption asserts that the instrumental variables (IVs) 

influence the outcome solely through exposure. Key abbreviations include SNPs for single-nucleotide 

polymorphisms, LD for linkage disequilibrium, and IVW (inverse variance weighted), weighted 

median, MR-Egger, and MR-PRESSO. 

 

 

 
 

  



Figure 2. The causal association between all metabolites and skin cancer (SC) risks. A) Protective 

factors against SC. B) Risk factors of SC. We selected IVW as a primary method; p<0.05 showed 

statistical significance; OR value >1 indicated a risk factor, while OR value <1 indicated a protective 

factor. 

 
  



Figure 3. The causal associations between four metabolites and SC risks. We selected IVW as a 
primary method; p<0.05 showed statistical significance; OR value >1 indicated a risk factor, while 
OR value <1 indicated a protective factor. 

 
 

 

  



Figure 4. Scatter plot showing the relationship between four metabolites and the SC risk. A) Leucine 

to N-palmitoyl-sphingosine ratio in SC. B) Glycerol to palmitoylcarnitine ratio in SC. C) Oleoyl-

linoleoyl-glycerol levels in SC. D) Hypotaurine to taurine ratio in SC. 

 
  



Figure 5. A funnel plot showing IVs for each significant causal association between four metabolites 

and the SC risk. A) Leucine to N-palmitoyl-sphingosine ratio in SC. B) Glycerol to palmitoylcarnitine 

ratio in SC. C) Oleoyl-linoleoyl-glycerol levels in SC. D) Hypotaurine to taurine ratio in SC. 

 
  



Figure 6. Leave-one-out plot showing the genetic associations of four metabolites with the SC risk. 

A) Leucine to N-palmitoyl-sphingosine ratio in SC. B) Glycerol to palmitoylcarnitine ratio in SC. C) 

Oleoyl-linoleoyl-glycerol levels in SC. D) Hypotaurine to taurine ratio in SC. 

 

 

 
Online Supplementary Material: 
Supplementary Table 1. The heterogeneity of causal association between all metabolites and SC risks. 
The p-values for Cochran's Q were above 0.05, suggesting that no significant heterogeneity effects 
were found. 
Supplementary Table 2. The pleiotropy of causal association between all metabolites and skin cancer. 
The p-values for the MR-Egger intercept were above 0.05, suggesting no significant pleiotropy effects 
were found. 


