Natural language processing of online support group postings reveals patients’ perspectives on strategies for managing psoriasis
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Psoriasis is a chronic skin disorder, and patients encounter high physical and psychosocial burdens. Social media forums feature extensive patient-generated comments. We hypothesized that analyzing patient-posted comments using natural language processing would provide insights into patient engagements, sentiments, concerns, and support, which are vital for the holistic management of psoriasis. We collected 32,000 active user comments posted on Reddit. We applied Latent Dirichlet Allocation to categorize posts into popular topics and employed spectral clustering to establish cohesive themes and word representation frequency within these topics. We sorted posts into 29 significant topics of discussion and categorized them into four categories: management (37.48%), emotion (21.57%), presentation (19.79%), and others (3.57%). The frequent posts on management were diet (7.23%), biologics (6.95%), and adverse effects (3.88%). The emotion category comprised negative sentiments (11.02%), encouragement (5.49%), and gratitude (5.06%). The presentation topic included a discussion of scalp (5.69%), flare-timing (3.63%), and arthritis (2.64%). Others comprised differential diagnosis (5.01%), leaky gut (4.12%), and referrals (3.70%). This study identified patients’ experiences and perspectives associated with psoriasis, which should be considered to tailor support systems to improve their quality of life.
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.