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Abstract 

The Liaodong Bay spotted seal (Phoca
largha) population experienced several drastic
declines in the last 80 years. Recent studies
are contradictory regarding the level of genet-
ic diversity and population structure of P.
largha, possibly because of the use of non-
species-specific nuclear markers. Here, we
report on i) the first isolation and character -
ization of 10 species-specific polymorphic
microsatellite loci for the spotted seal, ii)
sequences of a 572 bp mtDNA fragment in 25
Liaodong Bay individuals that we analyzed
together with all published haplotypes from
Liaodong Bay and Japan. Intermediate genetic
diversity in microsatellite loci was found in the
Liaodong Bay population and the effective
popu lation size estimates were 41.8 to 86.8
individuals. Low mtDNA genetic variability,
especially nucleotide diversity, in the Liaodong
Bay population was detected, but Bayesian sky-
line plots did not show any evidence of recent
bottleneck. Both F-statistics and the haplotypic
network indicate a clear differentiation
between the Liaodong Bay and Japanese popu-
lations separated by a fixed mutation. Analysis
of mtDNA data indicates that Liaodong Bay
female seals show fidelity to their breeding
site, and breeding time data suggest that this
population is reproductively isolated from
popu lations in other breeding areas. The
observed low genetic diversity in mtDNA and
the intermediate levels of nuclear microsatel-
lite diversity, combined with the potential
genetic isolation, suggest that the Liaodong

Bay population might be at risk and that fur-
ther investigation of the population genetics of
spotted seals across their whole range is war-
ranted for proper management of the species.

Introduction

Multiple populations of various seal species
are threatened throughout the world because
of human activities such as direct catches and
accidental mortality in fishery activities, as
well as modifications of habitat.1-3 Seal stock
boundaries generally are poorly understood
because most species are migratory and have
high dispersal abilities. The lack of objective
data on seal population genetic diversity and
stratification hinders achievement of sustain-
able management. 
The spotted seal (Phoca largha; Pallas 1811)

inhabits the ice and waters of the North Pacific
Ocean and adjacent seas, and Liaodong Bay
(LB) in China is the southern-most of the eight
putative separate breeding areas (Figure 1).4

Given that the abundance of spotted seals has
not been extensively quantified, the species is
listed as “data deficient” by IUCN (Red list;
www.iucnredlist.org). However, it is clear that
the spotted seal in China drastically declined in
the last 80 years as reliable catch estimates are
available for the period 1930-1990 during which
30,395 seals were caught.5,6 Spotted seals have
been hunted historically in China for their oil,
fur, and genitalia. As various rough estimations
performed between 1979 and 1983 indicated
that the LB seal population might consist of
only about 2,000 individuals, the Chinese gov-
ernment formally banned the hunting of spot-
ted seals in 1982.5,6 As a result, the size of the
LB population increased rapidly and was esti-
mated at 4,500 animals in 1990.6 However, in
the last decade, the population dramatically
decreased again to an estimation of less than
1,000 individuals7 because of several factors.
First, illegal hunting of spotted seals still occurs
because the demand from the Chinese trad -
itional medicine market persists: preparations
derived from seal genitalia are thought to
enhance human male sexual potency. Second,
the spotted seal population is threatened by
massively increased human activities in LB8:
pollution, habitat destruction, fishing activi-
ties, deliberate aggression by fishermen, gas
and oil exploitation, and development of ship
transportation. 
Some recent studies are available on the

genetic diversity and population structure of P.
largha. First, O’Corry-Crowe and Bonin9

obtained mtDNA sequences from 247 spotted
seals and genotyped, for 18 microsatellite loci,
207 spotted seals (sampled from the Chukchi
Sea, Bering Sea, NW Pacific Ocean, Sea of
Okhotsk, Sea of Japan, and Yellow Sea), and

found a significant differentiation between the
southern regions (Yellow Sea and Sea of
Japan) and the northern ones (Okhotsk,
Bering, and Chukchi Seas). However, in that
study only five individuals were collected from
LB and the data is not available publically.
Second, Mizuno et al.10 sequenced a 571bp
fragment of mtDNA control region and adja-
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cent tRNAs from 66 spotted seals from and
around breeding area 4 (Figure 1) located
along the coastal regions of Hokkaido (Japan),
and found a high diversity (57 haplotypes)
among individuals and no population struc-
ture. Third, Han et al.11 sequenced a 717bp
mtDNA control region fragment from 46 spot-
ted seals sampled in LB, and found 17 haplo-
types. These haplotypes were compared with
15 haplotypes of the 57 found in Japanese spot-
ted seals.10 They found a very low genetic diver-
sity in LB with the presence of two fixed differ-
ences (one is an insertion/deletion at position
16296 of the threonine mtDNA tRNA gene, the
other is a C/T transition at position 16607)
between Chinese and Japanese haplotypes.
However, the authors did not perform F-statis-
tics or haplotypic network analysis and did not
incorporate all available haplotypes from
Japan, which may result in inaccurate conclu-
sions. Finally, Han et al.8 found a low level of
genetic diversity, comparable to some docu-
mented bottlenecked mammal species, among
176 LB spotted seal individuals using 15
microsatellite loci isolated from other seal
species. This latter result should be taken with
caution as variability can be significantly
underestimated when using cross-species
microsatellite amplification.12

Here, we report on the first isolation and
characterization of ten highly polymorphic
species-specific microsatellite loci for the
spotted seal P. largha. The obtained microsatel-
lite data allowed us to examine the genetic sta-
tus of the LB seal population and estimate its
effective population size. A 572bp mtDNA frag-
ment was sequenced from the same 25 individ-
uals and analyzed together with all published
haplotypes from LB and Japan to assess the
demographic historical changes of the LB  
population and its genetic relationship with
the Japanese one. 

Materials and Methods

Sampling and DNA extraction
Tissue samples (muscle and skin) were

obtained from discarded or partly decayed car-
casses of 20 LB spotted seals (Figure 1). Five
additional samples were collected from ani-
mals that died at Penglai Aquarium, which
were all caught from the wild (LB) and bred in
captivity. All the 25 samples were collected at
different time periods by different people and
in different localities within LB during the last
seven years. Genomic DNA was extracted
using standard procedures.13

Isolation and characterization 
of spotted seal microsatellites
A spotted seal genomic library enriched for

microsatellites was constructed as in Tzika et

al.14 Sequences were fed into OLIGOFAKTORY15

to identify microsatellite repeats and their
optimal flanking primers. In total, 59 loci were
tested. Thirty of the loci that generated a PCR
product were screened for polymorphism
among eight spotted seal samples using fluor -
escent dUTPs (Fermentas); 10 loci were
monomorphic, and 20 loci proved polymorphic.  

Genotyping and microsatellite
analysis
On the basis of PCR product sizes, polymorph -

ism levels, and lacking of scoring ambiguity, 10
of the 30 microsatellite loci screened were
selected for genotyping all 25 individuals using
three multiplex-PCR reactions (Table 1).
Genotyping products were separated by elec-
trophoresis (ABI 3730 DNA Analyzer). Micro -
satellite allele sizes were determined with
GeneMapper 3.7 (Applied Biosystems).
Presence of null alleles and allele dropout at

each locus was tested with MICROCHECKER
2.2.3.16 Using Arlequin 3.11,17 we i) tested for
departure from Hardy-Weinberg (HW) equilib-
rium (900,000 Markov chain iterations); ii)
tested for independence between each pos -
sible pair of loci using likelihood-ratio statis-
tics (null distribution obtained with 10,000
permutations); iii) calculated various nuclear

genetic diversity statistics: number of alleles
per locus (A) and observed (HO) and expected
(HE) heterozygosities. Critical significance
levels for multiple testing were corrected
according to the Bonferroni procedure.18

To identify putative recent reduction of
effective population size, we first used the het-
erozygosity excess test implemented in the
software BOTTLENECK 1.2.02.19 We used the
TPM model with 20,000 replications, 95% of
stepwise mutations and 5% multi-step muta-
tions, and variance among multiple steps of 12,
as recommended for microsatellites.20

Statistical significance was assessed with a
one-tailed Wilcoxon signed rank test, which
recommends, to achieve high power, 15-40
individuals with 10-15 polymorphic loci.19

Because our data fits those recommendations,
having tested 25 individuals with 10 loci, we
applied this test here. Second, we used the
qualitative descriptor of allele frequency distri-
bution (“mode-shift” indicator)21 also imple-
mented in BOTTLENECK 1.2.02.19 However, the
statistical power for this method is low for
sample sizes smaller than 30 individuals.19

Finally, we used Garza-Williamson index (M),
the mean ratio of the number of alleles at a
given locus (k) with respect to the range of
allele size (r), to detect population bottlenecks

Article

Figure 1. Spotted seal distribution (light blue) and breeding sites (numbered dark blue
areas): 1) Liaodong Bay, sampling site of this study; 2) Peter the Great Bay; 3) the west-
ern coast of Sakhalin Island in the Tatar Strait; 4) the eastern coast of Sakhalin Island
extending to northern Hokkaido; 5) northern Shelikova; 6) Karaginsky Bay; 7) Gulf of
Anadyr; 8) east of the Bering Sea.
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(as implemented in Arlequin 3.11).17,22 Studies
of several natural populations have shown that
M is greater than 0.82 for populations that
have not suffered a known reduction in size
and less than 0.70 for those that went through
a bottleneck.22 Because the population size of
the LB spotted seal population was roughly esti-
mated by several incomplete investigations,7

three genetic methods were used to estimate
its effective population size (Ne). First, we used
the linkage disequilibrium method associated
with bias-correction23 implemented in LDNe24

and excluded alleles with frequency less than
0.03 because it generally provides a better bal-
ance between precision and bias for a sample
size of 25.25 Second, we used the heterozygote
excess method26 implemented in NeEstimator.27

Third, we estimated Ne with a 95% confidence
interval using the approximate Bayesian com-
putation method28 implemented in ONESAMP.29

Mitochondrial DNA sequence
analyses
We amplified an mtDNA fragment contain-

ing a portion of the threonine and proline
tRNA genes and part of the control region,30

using the primers L16274 (5’-TACACTG-
GTCTTGTAAACC-3’) and H34 (5’-CCAAATG-
CATGACACCACAG-3’) of 25 spotted seal indi-
viduals from LB. PCR products were purified,
cycle sequenced on both strands (with L16274

and H34 primers), and run on an ABI 3730
sequencer. We analyzed our LB spotted seal
mtDNA sequences in combination with pub-
lished sequences of 46 spotted seals from LB11

and 66 spotted seals from the Coast of
Hokkaido, Japan.10 Haplotype (H) and
nucleotide (p) diversities were computed
using Arlequin 3.11.17 Evolutionary relation-
ships among haplotypes were examined using
the median-joining network (MJN) approach31

implemented in NETWORK 4.2.0.1
(http://www.fluxus-engineering.com). This
approach has been proved to be one of the
most reliable network procedures.32,33 Pairwise
Fst and Φst statistics were used to estimate
genetic differentiation among populations, as
implemented in Arlequin 3.11 (statistical sig-
nificance evaluated using 16,000 permuta-
tions).17 The F-statistic is based only on the dif-
ference in overall haplotype frequencies, while
the Φ-statistic takes into account both haplo-
type frequencies and genetic distances among
haplotypes.34

To estimate the past population dynamics of
the LB population, we used the 71 mtDNA
sequences to construct Bayesian skyline plots
(BSPs)35 as implemented in BEAST v1.5.4.36

This method uses an MCMC sampling proced -
ure to estimate the posterior distribution of
the effective population size.35 We used the
HKY substitution model (determined by
ModelGenerator37) and a strict molecular clock

for the mtDNA control region sequence.
Because an appropriate nucleotide substitu-
tion rate has not been estimated for this line-
age, the evolutionary rate was set to 1.0 and
the branch length in the plot will be in units of
mutations per site. Note that the mutation
rate affects only the scale of the BSPs, but not
its shape. Three independent runs were per-
formed for 1¥108 iterations, with the first 10%
discarded as burn-in, sampled every 1,000
iterations. Results of the analyses were visual-
ized using Tracer v1.5.38 Convergence of the
chains to the stationary distribution was con-
firmed by visual inspection of plotted poster ior
estimates.

Results

Microsatellite variability
The cloned sequences corresponding to the

10 selected spotted-seal microsatellite poly-
morphic loci have been deposited in GenBank
(accession numbers GU232531-GU232540). All
25 sampled individuals were successfully
genotyped for the 10 loci. There was no signifi -
cant evidence for null alleles, large allele
dropout, or scoring errors. No locus showed
significant deviation from HW equilibrium or
linkage disequilibrium after Bonferroni

Table 1. Characterization of ten microsatellite loci in 25 spotted seals (Phoca largha) from Liaodong Bay (China). 

Ta Size GenBank
Locus Primer sequence (5’-3’) Repeat motif (°C) range Accession No. A HO HE HWE M

PLf4 F: GTTTCTTGCCCACCATTTTCTGCTCC (GT)22 59 124-140 GU232531 6 0.72 0.71 0.56 0.67
R: FAM-TTTTCATTACTTCTTTCTTACCC

PL65 F: GTTTCTTCATGTTCCCTGTCTCTTCCT (AC)21 59 225-247 GU232532 8 0.56 0.79 0.03 0.67
R: PET-TGCTTCATGTCTTTTTCATTTTT

PLb10 F: GTTTCTTTTTTCTTCCTATTTTTCTACATAA (AC)20 59 304-316 GU232533 6 0.64 0.69 0.18 0.86
R: VIC-TCAACTTCCATCTCCTACCA

PLb9 F: GTTTCTTGGGGAGGGAAATGGGGATA (TG)19 59 147-157 GU232534 5 0.68 0.62 0.95 0.83
R: FAM-TGGGGAGGGGAGATTGTG

PLg10 F: GTTTCTTGCATTATCACACCCATTTTAC (TG)9(AG)22 59 191-213 GU232535 10 0.80 0.82 0.71 0.83
R: NED-TTCTCCACACTGCCTTAGCA

PLc5 F: GTTTCTTACCTCTGAAACAAATACATTGT (AAG)7A(AAG)24 62.2 227-260 GU232536 11 0.96 0.86 0.82 0.92
R: PET-CCACCCCCTTCCCCTCTA

PLe2 F: GTTTCTTTTTTAGTCTTTTGTGTTGGTTT (TG)19 59 400-422 GU232537 9 0.96 0.86 0.28 0.75
R: VIC-CTTCCTTCTTCTGCCCAGT

PLd7 F: GTTTCTTCAGCATTACCTACAATAGCCAAA (ATAG)12 59 222-238 GU232538 5 0.56 0.66 0.48 1.00
R: NED-ATTCTTGCAACTCAATAAATCCAA

PL68 F: GTTTCTTTGTTTGTTGAAAATCAGGATG (TTC)21(GA)8 58 247-270 GU232539 9 0.68 0.83 0.22 0.75
R: PET-CCTCTTACCCACTGCTTGT

PL57 F: GTTTCTTTCCCCTTCGCCTGTTCTG (CA)9(GA)24 58 419-449 GU232540 10 0.80 0.77 0.99 0.63
R: VIC-TTTGTCTCCCTGTTTCTTTTC

Mean 7.9 0.74 0.76 0.79

For each locus we list: the name of the locus; the sequences of the forward and reverse primers, the forward primer (F) includes a GTTTCTT tail (underlined) at its 5’-end to force A+ alleles and, hence, improve
binning of alleles, and the reverse primer (R) was labelled fluorescently; the repeat motif column shows the repeat pattern of the cloned allele; Ta, annealing temperature; Size range, range of allele sizes (bp)
observed in our study; the GenBank accession number of the genomic clone sequence on which the corresponding primers have been designed; A, number of alleles per locus; HO, observed heterozygosity; HE,
expected heterozygosity; HWE, probability values of exact tests of fit to Hardy-Weinberg equilibrium; M, Garza-Williamson index; and the mean value of A, HO, HE, and M across the 10 loci. The microsatellites are
separated in the three primer sets used for the multiplexing reaction.

Non
-co

mmerc
ial

 us
e o

nly



[page 36] [Trends in Evolutionary Biology 2010; 2:e6]

proced ure. The number of alleles per locus var-
ied from 5 to 11, with a mean number of 7.9
(Table 1). As previously demonstrated,39,40 the
loci with compound repeat motifs usually
exhibited more alleles in our study. 
The analyses of heterozygosity excess and

the allele frequency distribution mode-shift did
not detect any significant recent bottleneck in
our population. Meanwhile, the mean Garza-
Williamson index (M) was 0.79 (Table 1),
slightly lower than the value for populations
that have not suffered a known reduction in
size (0.82) but above the critical value (0.70),
so we may infer that this population did not
experience any significant recent bottleneck.
Expected and observed heterozygosities over all
microsatellite loci varied from 0.62 to 0.86 and
from 0.56 to 0.96, respectively. Furthermore,
genetic diversity (HE) found in our samples
with species-specific primers was higher than
that of another LB sample studied by Han et al.8

using microsatellite loci isolated from other
seal species (Supplementary Table 1).
The estimated mean effective size using the

linkage disequilibrium method was 74.2 (95%
CI=39.7-306.8, jack-knife on loci). The estima-
tion based on the heterozygote excess method
was 86.8 (95% CI=53.4-204.9), whereas the
approximate Bayesian computation method

estimate of Ne was 41.8 (95% CI=31.3-82.0).
Because the three confidence intervals over-
lapped, there was no significant difference in
the values calculated by the three different
methods. 

Mitochondrial sequence diversity,
phylogeographical patterns, and 
F-statistics
The mtDNA fragment was sequenced suc-

cessfully in all 25 samples. Of the 572
nucleotides scored, nine variable sites were
detected, defining 10 haplotypes differing by
eight transitions, no transversion, and one
insertion/deletion. Nine of these 10 haplotypes
overlapped with those found by Han et al.,11

with the single new haplotype characterized
here available in GenBank (accession number
EU420021). No haplotype from the LB popula-
tion corresponded to any of the 57 haplotypes
found in 66 spotted seals of a Japanese popula-
tion (breeding area 4 in Figure 1).10

The haplotype and nucleotide diversity esti-
mate for the LB population was 0.8241±0.0371
and 0.0033±0.0022, respectively (Supple -
mentary Table 1). Supplementary Table 1 also
indicates that genetic variability in terms of
haplotype and nucleotide diversity is lower in
the LB population in this study and in that of

Han et al.11 than in the Japanese population.10

The median-joining network among all hap-
lotypes (Figure 2) indicates a clear differenti -
ation between the LB and the Japanese popula-
tions separated by a single fixed mutation (an
insertion/deletion at the position 16,296 locat-
ed in the tRNA-thr). In agreement with the
diversity indices discussed above, the network
indicates that haplotype diversity is higher in
the Japanese than in the LB population. 
Similarly, F-statistics indicate 1) no signifi-

cant difference between our samples and those
from Han et al.11 (Supplementary Table 2A), but
2) significant differentiation between the popu-
lations from LB and Japan10 (Supplementary
Table 2A and B). BSPs show that the LB popula-
tion maintained relatively stable population
sizes over the demographic history, and no
extreme size changes occurred even when con-
sidering the 95% HPD around the median BSP
line (Supplementary Figure 1).

Discussion

Rapid human demographic and economic
development threatens the survival of marine
mammals worldwide, but nowhere more than
in Asia in general, and in China in particular.
LB is an important breeding ground for P.
largha and corresponds to the southern-most
end of the species’ range. Spotted seals spend
much of their time there while bearing their
pups on the ice edge along the coast, very close
to human-induced perturbations. Information
about the species’ genetic diversity and popu-
lation stratification is gradually becoming
available, but species-specific nuclear markers
were lacking. In this study, we isolated the first
spotted seal-specific microsatellite nuclear
loci. We also sequenced a fragment of the
mitochondrial DNA in 25 samples and com-
bined this data with previously published spot-
ted seal homologous sequences from Japan
and China.
Despite that the LB spotted seal population

has drastically declined in the last 80 years,
levels of genetic diversity (expected heterozy-
gosity, HE) found in our samples are intermed -
iate (HE=0.76), with values similar to those
observed in other pinniped species using
species-specific primers12,41,42 and higher than
in the documented bottlenecked populations of
Northern elephant seals (Mirounga angu-
stirostris, HE=0.13),1 Hawaiian monk seals
(Monachus schauinslandi, HE=0.03),2 and
Mediterranean monk seals (Monachus
monachus, HE=0.16).3 Furthermore, no recent
reduction in population size is evidenced by
the molecular data. This might be because of
our small sampling size causing the insuffi-
cient statistical power in the bottleneck analy-

Article

Figure 2. Median-joining network among mitochondrial Phoca largha haplotypes of
Liaodong Bay (green) and Japan (yellow). Black spots indicate missing haplotypes. The
red line shows the fixed mutation between the populations of Japan and Liaodong Bay.
Circle sizes are proportional to the corresponding haplotype frequencies. The number of
mutations is indicated when an edge corresponds to more than one mutation. 
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sis “mode shift,” or the methods we used to
detect bottleneck are too conservative.
However, the various genetic methods used in
this study have shown that the effective size
(Ne) estimates of the LB population varies
between 41.8 and 86.8 individuals. It has been
suggested that populations with Ne smaller
than 50 could cause inbreeding depression and
those with Ne smaller than 500 are thought to
be at risk of losing genetic variation through
genetic drift.43-45 Contrasting levels of genetic
diversity between our analysis and a study
from the same population8 indicate that vari-
ability can be underestimated significantly
when using cross-species microsatellite ampli-
fication. 
Despite that the total sample size (71) of LB

in this study and that of Han et al.11 is higher
than that of Japan (66 samples),10 the former
population exhibits much lower mtDNA control
region genetic diversity (Figure 2 and
Supplementary Table 1). The observed differ-
ence in diversities in mtDNA control region
(both haplotypic and nucleotidic) between the
Chinese and Japanese populations is even
underestimated, as many of the Japanese hap-
lotypes probably remain to be sampled as
revealed by the large number of missing haplo-
types in the network (57 sampled haplotypes
vs. 22 missing haplotypes; Figure 2). The
nucleotide diversity estimate for the LB popu-
lation (p=0.0033±0.0022) is considerably
lower than reported for the control regions of
other seal species; for example, grey seal
(Halichoerus grypus),46 harbour seal (Phoca
vitulina),30 ringed seal (Phoca hispida),47 hood-
ed seal (Cystophora cristata).48 Furthermore,
the nucleotide diversity of the LB population
was even lower than that of the bottlenecked
Northern elephant seal population (p=0.0065-
0.0086).49 However, BSPs investigating effect -
ive population size (Ne) over time did not
detect any past bottleneck event (Supple -
mentary Figure 1), a result similar to that
obtained in the mismatch distribution analy-
ses (data not shown). Hence, it seems that the
recent reduction of the LB population size
caused by human activities has not yet caused
a severe bottleneck influencing the diversity
indices, but rather that older and possibly
recurrent events had a more profound effect on
the population, as observed by mtDNA
sequences. Note that the lack of a detectable
signature associated with possible “recent”
bottleneck does not mean that intense human
activities will not have a significant impact on
the levels of genetic variability and the long-
term sustainability of this population.
Mitochondrial control region haplotypes of

individuals from LB and Japan cluster into two
distinct haplogroups separated by a fixed
mutation (Figure 2). This significant differen-
tiation between the two populations is also
confirmed by the pairwise FST and ΦST statis-

tics (Supplementary Table 2). The design of
primers allowing to specifically amplify haplo-
types with or without the insertion site would
constitute an efficient approach to distinguish
the P. largha populations from LB and Japan.
Note that Han et al.11 erroneously described
another putative additional fixed transition
because they included only 15 of the 57
Japanese haplotypes10 in their analyses. 
Spotted seals give birth in LB from early

January to mid February, which is earlier than
in the other breeding areas (February to
April).5 Hence, whereas our analyses of mtDNA
data suggest that LB female seals show fidelity
to their breeding site, the breeding time differ-
ence further suggests that the population in
LB might be reproductively isolated from popu-
lations in other breeding areas. The observed
low diversity in mtDNA and intermediate level
in the microsatellite loci combined with genet-
ic isolation (Figure 2) suggests that the LB
population is at risk to some extent, a situation
possibly comparable to the extensively charac-
terized Peruvian populations of dusky dolphin
(Lagenorhynchus obscurus) and Burmeister’s
porpoise (Phocoena spinipinnis).50-52

The set of species-specific microsatellite
loci isolated here will be useful for further
investigations on the genetic diversity and
population structure of spotted seals (P.
largha) across their whole range. Currently,
few conclusions can be drawn about the possi-
ble existence of breeding isolation or regional
divisions. A more elaborated study including
additional samples from other breeding areas,
especially spotted seals from the coast of
Korea, should be conducted. Indeed, it has
been suggested that about 300 spotted seals
spend the spring, summer, and autumn feed-
ing along the coast of Bak-ryoung Island off
western South Korea (Figure 1) and return in
October to their breeding grounds in LB,
China.53 We, unfortunately, after several
attempts, never obtained any Korean sample
for this study and therefore cannot investigate
the relationship between these populations.
Satellite-telemetric studies of spotted seals in
LB could also be used in the future to clarify
their migration route and investigate whether
they are philopatric. 
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