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Erythropoietin as a neonatal neuroprotectant:
basic and clinical studies

Neonatal brain injury
Although there are many mechanisms by

which the neonatal brain can sustain injury,
perinatal asphyxia and preterm delivery are
two common mechanisms. To date, effec-
tive treatment strategies to improve neu-
rodevelopmental outcome are not yet avail-
able. Perinatal asphyxia occurs in 2-4 of
every 1000 live-born term infants,1 and
accounts for 23% of neonatal deaths world
wide.2 In recently published hypothermia
trials, between 55 and 62% of infants diag-
nosed with perinatal asphyxia treated with
conventional therapy died or survived with
significant neurodevelopmental disability.3,4

The cell death associated with perinatal
asphyxia occurs in two phases: early necro-
sis followed by later apoptosis, the specific
timing of which varies by location in the
brain.5 During acute hypoxia-ischemia,
neuronal oxidative phosphorylation is
diminished due to the lack of oxygen. The
resulting energy depletion leads to an accu-
mulation of extracellular glutamate, and
activation of glutamate receptors, particu-
larly the N-methyl-D-aspartate (NMDA)
receptor. Excitotoxic stimulation of gluta-
mate receptors leads to a massive influx of
calcium, sodium and water into the cell,
excessive free radical production, and sub-
sequent impairment of mitochondrial func-
tion, cell swelling, and neuronal cell death.6,7

A second wave of neuronal cell damage
occurs during the reperfusion phase. During
this period there is post-ischemic release
of oxygen radicals, increased nitric oxide
(NO) synthesis, inflammation and an imbal-
ance between the excitatory and inhibito-
ry neurotransmitter systems. The net result
is often the stimulation of apoptotic cell
death.8-10 This deleterious cascade which
evolves over many hours and persists for
days following injury5 can theoretically be
abrogated even if interventions begin after
the acute insult. Hence much of the effort
to develop treatments to lessen the sever-
ity of injury is focused on this extended
interval as a window of opportunity for
intervention. Strategies have included

interventions to reduce cerebral edema,
glutamate toxicity, inflammation, and free
radical damage.11 Again, none of these
strategies have effectively diminished death
or disability. While early hypothermia is
promising,3,4 its effects are limited, and only
appropriate for near-term to term infants,
not preterm infants.

Preterm delivery and its sequelae is
another important cause of brain injury in
neonates. Neonatal mortality and morbid-
ity is closely linked to gestational age and
birth weight.12 Since 1991, mortality rates
for extremely low birth weight (ELBW)
infants (preterm infants < 1000 gm) have
improved significantly.13 In fact, most ELBW
infants now survive. Figure 1 shows the sur-
vival statistics for the University of Wash-
ington NICU over the years 2000-2004.
These data are comparable to other level III
units in the country. As survival improves in
these tiny infants, a relatively constant pro-
portion of survivors are significantly
impaired, resulting in a larger number of
impaired survivors.14-16 Longterm survival (to
2 years of age) of ELBW infants is now
between 60 to 70 percent.16-18 These infants
are particularly vulnerable to white matter
injury, and sequelae include cerebral palsy,
deafness, blindness, and mental retardation.
When these abnormalities are considered
together, neurodevelopmental impairment
(neurosensory abnormality and/or MDI
score <70) is present in 36 to 48 percent of
survivors.16-18 Correspondingly, these chil-
dren have a disproportionately high use of
special needs services due to their chronic
conditions.19

Animal models of perinatal hypoxia-
ischemia

Animal models of neonatal hypoxic-
ischemic brain injury are essential for the
development and testing of novel thera-
peutic approaches. Seven day old rat pups
are frequently selected for study because
this age corresponds neurodevelopmental-
ly to a 32-34 week gestational age human
fetus. At this age, cerebral cortex layering
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is complete, but myelination is incomplete.1 At an ear-
lier age (P2), rat pups can be used to model extreme
prematurity. Models of perinatal hypoxic brain injury
vary from prolonged hypoxia alone,20,21 to transient
middle cerebral artery occlusion,22,23 to unilateral liga-
tion of the common carotid artery with subsequent
hypoxia.24 However, substantial morphological and
functional differences between developing human and
rodent brains exist, limiting the successful translation
of neuroprotective strategies from laboratory studies
to clinical use. To overcome these limitations, larger
mammals including rabbits, dogs, piglets, sheep, and
non-human primates have been used to model perina-
tal asphyxia.25-28 The non-human primate is valuable
because complex behavior more comparable to
humans can be tested, but this model is expensive,
and required specialized centers.29-31 Ideally, new clin-
ical therapies should be founded on data derived from
a combination of in vitro and in vivo approaches, using
small and large animal models, with non-human pri-
mates used as the penultimate pre-clinical step.

Erythropoietin
Erythropoietic effects of erythropoietin. Erythropoi-

etin (Epo) is a 30.4 kD glycoprotein that regulates ery-
throcyte production.32 Epo functions by binding to its
specific cell surface receptor (Epo-R). Red cell regula-
tion occurs by inhibiting apoptosis of erythroid pro-
genitors, and by supporting their proliferation and dif-
ferentiation into normoblasts. Since FDA approval, Epo
has undergone many clinical trials in adults and chil-
dren to test its safety and efficacy as an erythropoiet-
ic agent. It is now widely used to treat or prevent ane-
mia due to a variety of causes including renal failure,
cancer, and prematurity.

Neuroprotective effects of erythropoietin. Discover-
ies in our laboratory and others over the past thirteen
years give ample rationale for the hypothesis that

high-dose Epo administration can be neuroprotective
after a central nervous system (CNS) injury. Indeed, in
animal models of brain injury including asphyxia, hem-
orrhage, or trauma, high dose Epo treatment at the
time of injury, and up to six hours following the event,
can reduce the subsequent brain damage significant-
ly.33 The mechanisms by which Epo is neuroprotective
remain an area of active investigation. Epo has mod-
est protective effects both in the CNS34,35 and the
peripheral nervous system,36 and these effects are seen
in models that employ a wide range of mechanisms of
injury.33 This lack of specificity suggests that Epo may
have multiple beneficial effects, some that affect neu-
rons directly, and others that are likely secondary to
Epo effects on other cells. To date, it has been shown
that Epo effects include: direct neurotrophic effects,37

decreased susceptibility to glutamate toxicity,38,39

induction of anti-apoptotic factors,40-45 decreased
inflammation,46-48 decreased NO-mediated injury,49-51

direct antioxidant effects,52-54 and trophic effects on
glia.55-57 In vivo, Epo also increases erythropoiesis, which
stimulates increased iron utilization. Although under
normal circumstances free iron is scarce, after hypox-
ic-ischemic injury, iron deposition is increased at the
site of injury.58 In the setting of hypoxia-ischemia, Epo-
induced increased iron utilization might decrease the
availability of free iron, thereby preventing or decreas-
ing free iron accumulation and its associated conse-
quences (oxidative injury). Epo may also provide neu-
roprotection by regulating blood flow to the brain fol-
lowing injury, as is suggested by Epo neuroprotection
in the model of subarachnoid hemorrhage.59,60 Long
term beneficial effects of Epo treatment may include
angiogenesis with improved blood flow to a damaged
region,61 and increased neurogenesis.62,63 These non-
erythropoietic effects of Epo may be mediated through
a newly identified receptor made up of one Epo-R sub-
unit, and the β common subunit, which is also part of
the receptor complexes of interleukin (IL)-3, GM-CSF
and IL-5.64,65

Epo in brain. Our group, and others, have established
that Epo and its receptor are present in the develop-
ing fetal brain.40,66-70 Epo and Epo-R mRNA and protein
can be detected as early as 5 weeks human gestation,
and persist throughout development. In the embryon-
ic cerebral hemisphere at 5 to 6 weeks post concep-
tion, both Epo and Epo-R localize to undifferentiated
neuroepithelial cells in the ventricular zone. As devel-
opment proceeds, the diffuse staining of broad zones
of developing neocortex seen in early gestation is
replaced by more specific cellular staining of increas-
ingly differentiated cells.68 Epo immunoreactivity is
present in multiple cell types of the developing human
brain, including astrocytes, subpopulations of neurons,
and microglia.70 Although both neurons and astrocytes
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produce Epo, the astrocyte is the primary source of
brain Epo.40,71 Brain Epo is smaller than circulating Epo,
due to differences in sialylation.66 In an elegant study
of mouse neurodevelopment, Knabe et al. showed ear-
ly diffuse Epo-R immunoreactivity of neuroepithelial
cells, followed by more specific reactivity in radial glial
cells from E11 onwards. Specific subpopulations of
neurons expressed Epo as development progressed,
and in the rostral midbrain and synencephalon, Epo-
reactive neurons were associated with Epo-R-express-
ing radial glial cells, suggesting an important neurode-
velopmental role for Epo and its receptor.70

Epo neuroprotection in neonatal models. Multiple
investigators have now shown Epo to be neuroprotec-
tive in neonatal models of brain injury.23,51,72-77 Neuro-
protective dosing in these studies has ranged from
1,000 U/kg/dose to 30,000 U/kg/dose. To summarize
these data, it can be concluded that Epo has anti-
apoptotic and anti-inflammatory effects in the acute
post injury period, with neurogenic and vasculogenic
effects in the recovery period. Reported neuroprotec-
tive effects vary somewhat based on Epo dose,
whether the mode of administration was intraperi-
toneal (IP) or subcutaneous (SC), and whether single
or multiple doses were given. Ultimately, Epo treat-
ment of neonatal brain injury results in improved short
and longterm outcomes, with both structural and
behavioral improvement. Both white and grey matter
injury show improvement with Epo treatment. These
effects are present when Epo is given immediately
after the injury, or up to 24 hours following injury.48

Safety of high dose erythropoietin in neonates. Dos-
es of Epo up to 1400 U/kg/week have been used safe-
ly to promote erythropoiesis in preterm neonates,78 but
potential long-term consequences of early high dose
Epo have not been established in this population. We
hypothesized that high dose Epo, given to normoxic or
hypoxic animals in the neonatal period would be safe
in a rat model.79 Three experimental groups were
assessed. Group 1 animals were given daily SC injec-
tions of 0, 2500, or 5000 U/kg Epo for the first five days
of life (P1-P5). Group 2 animals were exposed to dai-
ly SC injections of 0, 2500, or 5000 U/kg Epo during
P1-P5, plus 2 hours of hypoxia (8% O2) daily from P1-
P3. Group 3 animals underwent right carotid artery
ligation followed by hypoxia (8% O22 x 90min) at P7,
then injection of vehicle or Epo (2500U/kg daily x3).
Short and long term physiologic and behavioral eval-
uations were made. Major organs were evaluated
grossly and histologically. As expected, Epo treatment
transiently raised the hematocrit in treated animals. It
also prevented hypoxia-induced delays in geotaxis and
growth as well as hypoxia-ischemia-induced learning
impairment and substantia nigra neuron loss. No effect
on adult blood pressure, and no histologic differences

were found in brain, kidney, liver. We observed that
repeated treatment of newborn rats with high dose
Epo was safe in all conditions tested. Limitations of
this study include the fact that more complex behav-
ioral testing comparable to a human infant cannot be
assessed in rats. Furthermore, the effect of high dose
Epo on retinal vascular development was not tested. 

Ongoing clinical studies. Several clinical studies test-
ing the safety, pharmacokinetics, and efficacy of Epo
as a neuroprotective agent are underway in Neonatal
Units across the globe (Switzerland, Germany, United
States). At this time, studies are focused primarily on
possible protective effects of Epo in the very low birth
weight or extremely low birth weight infant. If these
studies show that Epo is safe, and has neuroprotective
effects, then larger multicenter collaborative trials will
be needed to confirm the findings. More information
is needed regarding the optimal Epo dose and duration
of therapy, and whether to target steady state vs peak
serum concentrations. It is also unclear whether Epo
will be more effective as a prophylactic or rescue treat-
ment in this population. Similarly, for term infants with
brain injury due to stroke, perinatal hypoxia-ischemia,
or by other mechanisms, more data are needed. It is
now possible to treat near term brain-injured infants
with hypothermia. The question is, will additional
adjunctive therapies further improve outcomes? This is
promising research, and we anticipate that in the next
decade, more progress will be made to answer these
important questions.
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