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Abstract 

The HER2 gene amplification occurs in 20-
30% of breast cancer and is correlated with a
poorer prognosis compared to HER2-negative
disease due to increased proliferation and
metastatic potential. Two major types of recep-
tor inhibitors have been developed for therapy
and one for each categories is currently used
in clinic: i) the humanized monoclonal anti-
body trastuzumab, directed against the HER2
extracellular domain; and ii) the EGFR/HER2
dual  tyrosine kinase inhibitor lapatinib.
However, patients may develop resistance to
drugs and show disease progression. Several
mechanism of resistance have been explored
and are still under investigation. Here, we
focus our attention on the role played by the
alternative splicing forms of HER2 in mediat-
ing HER2 oncogenic activity and in condition-
ing the response to HER2 therapies. Three
HER2 splice variants have been described so
far; the p100 and the herstatin give raise to two
secreted proteins of 100 kd and 68 kd, respec-
tively, that act as cell growth inhibitors. The
third splice form of HER2 gene is the
Δ16HER2, encoding for a receptor lacking
exon16, whose absence determines constitu-
tive active dimers with transforming activity in
vitro and in vivo. The Δ16HER2 binds to
trastuzumab to a less extend, due to conforma-
tional changes of the extracellular domain and
its levels are supposed to increase proportion-
ally to the increasing of the HER2 wild-type
copy numbers in human primary breast can-
cers. Finally, HER2 carboxy-terminal fragments
(CTFs), generated by alternative initiation of
translation, were observed in breast cancer
patients. In particular, 611-CTF, activating mul-
tiple signaling pathways since it is expressed
as a constitutively active homodimer, was sug-
gested to be a potent oncogene capable of pro-
moting mammary tumour progression and
metastasis. Despite the evidences of a poten-
tial role of the naturally occurring inhibitors
p100 and herstatin on the wild-type HER2 and
its signaling pathway, to date they do not seem
to have a possible clinical development. To date
the most promising forms currently under
investigation that could have a key role in

determining the increased HER2-positive
tumours aggressiveness and toward the devel-
opment of bio-drugs are the HER2Δ16 and the
CTFs.

HER2 features and relevance
in breast cancer disease

HER2 (also know as c-HER-2 or HER2/neu)
is a proto-oncogene mapped to the chromo-
some 17q21,1,2 encoding a 1255 amino acid
transmembrane glycoprotein of 185 kDa3 des-
ignated as HER2 or p185HER2 (Figure 1A) that,
together with its relatives HER1, HER3 and
HER4, belongs to HER family of receptor tyro-
sine kinases (RTKs).4

The HER receptors share a similar struc-
ture, comprising an extracellular binding
domain, a transmembrane lipophilic segment,
and except for HER3, a functional intracellular
tyrosine kinase domain with a regulatory car-
boxy-terminal tail. These RTKs are activated by
the binding of specific EGF-like growth fac-
tors,5 but none of them directly binds to HER2.
Ligands binding induce receptor homo- and
hetero-dimerization and tyrosine autophosho -
rylation, which are obligatory steps in signal
activation.6 Despite orphan of a specific solu-
ble ligand, HER2 is the preferred heterodimer-
ization partner of the other three HER mem-
bers,7 since it adopts a fixed conformation
resembling a ligand-activated state, allowing it
to dimerize in the absence of ligand.8 Once
activated, it is able to induce signaling that
promotes proliferation and survival.9-12 HER2
amplification occur in 20-25% of breast can-
cers leading to poor prognosis.13-16 Indeed,
HER2 amplification leads to progression from
normal breast epithelia to invasive cancer
cells.17-19 Accordingly, gene expression analysis
showed that the HER2-positive tumours clus-
terized as a specific subset, mainly character-
ized by the lack of expression of genes associ-
ated with hormone receptor signaling path-
ways and high-level expression of a cluster of
genes associated with proliferation. This sub-
group was clearly distinguished from the other
aggressive phenotype (to which triple negative
breast cancer mainly belongs), defined by lack-
ing of HER2 expression and both estrogen and
progesterone receptors, from luminal, express-
ing estrogen receptor, and normal-like sub-
set.20 However, the HER2 overexpression is
necessary but not sufficient to induce malig-
nant transformation, as clearly demonstrated
by rat proto-oncogene HER2/neu transgenic
mice either bearing additional alterations in
HER2 gene sequence21,22 or cross-breeded with
mice transgenically expressing other cancer-
related alterations.23-25

The increased HER2 expression levels in
breast carcinoma respect to normal breast tis-
sue and the evidence of its driving role in
HER2-positive tumours progression made
HER2 an ideal target for specific therapeutic
approaches. Indeed, in 1998 trastuzumab, a
recombinant humanized monoclonal antibody
directed to the extracellular domain of the
HER2 protein, was the first monoclonal anti-
body to gain the FDA approval for clinical treat-
ment of women with HER2 positive metastatic
breast cancer.26 Since 2006 trastuzumab was
also approved for adjuvant treatment of
patients with early breast cancer and promis-
ing evidences showed its effect also in pre-
operative setting.27,28 The other HER2-targeted
therapy approved for clinical use is the
EGFR/HER2 dual tyrosine kinase inhibitor lap-
atinib, a competitor of ATP in the kinase
domain of HER2 that impairs the transmission
of its signal.29,30 Based on promising clinical
trials data,31,34 in 2007 FDA and EMEA approved
the use of lapatinib in combination with capac-
itabine in patients with advanced or metastat-
ic HER2-positive breast cancers.35 Despite
objective clinical results, obtained with bio-
drugs so far anti-HER2 agents show clinical
benefit in about 50% of patients with HER2-
positive breast carcinomas.36,39 Extensive liter-
ature aimed to clarify the mechanisms of
trastuzumab efficacy and resistance in differ-
ent breast cancer clinical settings has been
published so far,40 and a huge effort has been
devoted to the search for markers of response
to therapy. In spite of high investments, none
of the markers described as associated to ther-
apy sensitivity/resistance were sufficiently
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reliable to be introduced into the clinical set-
ting. 

It is now clear the importance of a persistent
targeting of HER2 axis in breast cancer and,
therefore, to develop additional therapeutic
strategies to better impair HER2 activity. This
will be reached through a more precise delin-
eation of both HER2 biology and HER2 drugs
mechanisms of action in tumours,44 especially
after the recent demonstration of improved
overall survival of gastric patients bearing
HER2 amplification and, therefore, trastuzum-
ab-treated in phase III trial. Indeed, it is
unlikely that the optimization of both treat-
ment protocols design and duration will be suf-
ficient to overcome HER2 resistance.40 It is,
therefore, necessary to come back to dissect
HER2 pathway and unravel key features con-
tributing to its transforming capacity. In the
present review, we focus our attention on the
role played by the alternative splicing forms of
HER2 in mediating HER2 oncogenic activity
and in conditioning the response to HER2
therapies (summarized in Table1), in breast
cancer.

p100: ECD from the splicing
processing

The first described HER2 splice variant was
the extracellular secreted 100kDa fragments
named p100. In 1993 Scott et al.41 described a
2.3 kb variant of HER2 mRNA encoding the
first 633 amino acids (aa) containing almost
the entire HER2-ECD (extra cellular domain)
(subdomains I-IV) (Figure 1B). Many trans-
membrane growth factor receptors have been
reported to have soluble, ligand-binding recep-
tor forms detectable in the conditioned media
of tumour cells and in biological fluids. These
soluble receptor proteins arise through prote-
olytic cleavage of membrane-anchored full-
length receptors42 and/or by alternative splic-
ing or other gene rearrangements that usually
produce novel transcripts which encode for
proteins containing parts of the ECD but lack-
ing the transmembrane and cytoplasmic
domains of the full-length receptor.43

p100 has been described to interfere with
oncogenic HER2 activity through different
mechanisms. Collectively, it acts as inhibitor of
tumour cell proliferation41,44-46 (Table 1).
Aigner et al. showed that this 100 kDa HER2-
ECD can act as a dominant-negative inhibitor
of growth factor-mediated tumour cell prolifer-
ation.47 They transfected MCF7 breast cancer
cells, since MCF7 does not endogenously
express this spliced HER2 mRNA but only low
levels of the full-length HER2 protein.
Doxycycline-regulated expression of the trans-
fected HER2-ECD cDNA induced the HER2-

ECD-mediated inhibition of spontaneous pro-
liferation as well as inhibition of heregulin-
mediated proliferation and signal transduc-
tion. As expected, significant amounts of p100
protein in the conditioned media has been
detected, demonstrating that the HER2-ECD
protein was effectively secreted in transfected
MCF7 cells. Likewise, in MKN7, a gastric
tumour cell line with very high expression lev-
els of the splice variant as well as full-length
HER2 proteins, ribozyme-targeting of the
endogenously expressed p100 mRNA splice
variant demonstrated reduction of p100-medi-
ated inhibition of proliferation in soft agar
accordingly with a reduced downstream signal-
transduction. Indeed, p100 over-expression
resulted in a time-delay and decrease of hereg-
ulin-mediated phosphorylation of the HER4
receptor, followed by a similar inhibition of
downstream signaling events such as activa-
tion of p44/p42 MAP-kinases. 

Actually, several evidences point to HER2-
ECD levels in serum as biomarker for HER2
over-expressing cancer aggressiveness and
therapy response. Indeed, HER2-ECD is easily
detectable using an enzyme-linked immuno -
sorbent assay (ELISA).48 The potential in vivo
role of soluble truncated HER2 proteins was

investigated in gastric tumours, where a trend
was found towards reduced HER2-ECD expres-
sion in tumours with a more aggressive phe-
notype.49 Clearly, the great part of data came
from breast cancer studies where serum ECD
levels have been proposed as predictive mark-
er for trastuzumab treatment. Several studies
have been performed providing contrasting
conclusions, therefore, the utility of serum
ECD values at baseline and during therapy as a
potential marker of tumour response or pro-
gression is actually a matter of debate.49-55

Herstatin: a naturally occurring
HER2 inhibitor

In 1999 Doherty et al.44 described a secreted
protein of 68 kDa, named herstatin, as the
product of an alternative HER2 transcript
which is generated by retention of intron 8 in
HER2 alternative mRNA (Figure 1C). This
transcript generates a protein that consists of
the first 340 aa-residues identical to N-termi-
nal subdomains of HER2, followed by a novel C-
terminus of 79 aa-residues.  Herstatin appears
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Figure 1. Structures of HER2 transcript variants. A) Full-length HER2; NCBI Reference
Sequence: NM_004448.2. The AUG start codon is located at position 239 and the coding
sequence (CDS) ends at position 4006. B) HER2-ECD (p100); the 3' end of the truncat-
ed transcript reveals an exonic extension of 165 bp with an in-frame stop codon and a
poly(A) addition site. C) Herstatin; the amino acid sequence is identical to the full-length
HER2 mRNA until amino acid residue 340. A 274-nt insertion located between
nucleotide residues 1171 and 1172 of the full-length mRNA results in frame with HER2
exon sequence and encodes a 79-aa extension after amino acid residue 340. D) Δ16HER2;
entire exon 16, from nucleotide 2073 to nucleotide 2120, is skipped from full-length
HER2 mRNA. E) 611-CTS; the 100- to 115-kDa p95HER2 fragment generated by alter-
native initiation of translation from the AUG codon in position 611. F) 687-CTS; the 90-
to 95-kDa fragment generated by alternative initiation of translation from the AUG
codon in position 687.  The N at the beginning of each rectangles series representing an
HER2 transcript identifies the amino terminus; the C at the end identifies the carboxy ter-
minus.
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to be a naturally occurring inhibitor of HER-2,
because it disrupts dimers, reduces tyrosine
phosphorylation of HER2, and inhibits the
anchorage-independent growth of transformed
cells that overexpressed HER2. Azios et al.
underlined the importance of herstatin in can-
cer disease since its ectopic expression leads
not only to the interruption of constitutive acti-
vation of HER2, but also to the lack of het-
erodimerization of HER2/HER3 and EGFR acti-
vation. The ability of herstatin to suppress
colony formation of HER2 or EGFR-overex-
pressing cells suggested its potential use in
limiting tumour cell growth driven by these
receptors.45 In 2005 Hu et al. described the
three dimensional structure of herstatin and
its interaction binding site with HER2 extra-
cellular domain.56 The interaction of herstatin
and HER2 on the cell surface was accompanied
by an increased co-localization of HER2 and
herstatin in the cytoplasm, suggesting that
HER2/herstatin complex formation may pre-
vent transit from endoplasmic reticular to cell
surface of HER2. The intracellular sequester-
ing of HER2 by herstatin may be a possible nat-
urally occurring inhibitory mechanism control-
ling cell growth57 (Table 1).

Several studies investigated the presence of
herstatin in normal and cancer cellular lines.
Herstatin mRNA was found expressed in nor-
mal human fetal kidney and liver tissue,58 but
it appears to be expressed at reduced levels
respect to the HER2 mRNA in breast carcino-
ma cells that contain amplification of HER2.59

A further study investigated the herstatin
mRNA level and its protein expression in
breast carcinoma tissues compared to their
normal breast tissues. In this context, it has
been shown that herstatin mRNA and protein
are expressed in non-cancerous breast, in
areas adjacent to breast carcinoma. This char-
acteristic expression pattern of herstatin in
non-cancerous breast tissues might contribute
to the normally effective endogenous HERs-
inhibition system, because there is a local
need for HERs inhibition in differentiating
ductal ephitelia.60 An additional study showed
that breast cancer tissues express Herstatin
mRNA, but the protein is absent in 75% of
breast carcinomas, which indicates that can-
cer cells are protected by not yet established
intrinsic mechanisms against the putative
growth-inhibitory effects of this molecule. The
authors speculate that, if this negative regula-
tion occurs at the pre-translational level, then
it seems possible that exogenous administra-
tion of i.e pan-HER antibodies would help in
blocking tumour growth. If the protein is pro-
duced but released from the cells, then it
seems possible that the mechanism, which
impairs the endogenous inhibitor activity, will
also apply to the exogenous administered anti-
body as well. Most importantly, if 25% of breast

carcinomas grow in the presence of an endoge-
nous pertuzumab-like inhibitor, which is pro-
duced in high amounts in some cases with
adverse prognostic parameters (HER2 overex-
pression, activated Akt/PKB, and blocked
p21CIP1/WAF1), then it remains questionable
whether these cancers would benefit from
exogenous attempts to disrupt HER2 dimeriza-
tion.61 It has been shown that Herstatin
expression inhibited the in vitro growth of the
human glioblastoma cell line U87MG in a dose
responsive manner and that prevented the
tumours formation.46 Additionally, authors
demonstrated that human glioblastoma bear-
ing truncated EGFR were resistant to
Herstatin, suggesting that herstatin may have
utility against glioblastoma driven by the
EGFR.46

Δ16HER2: the real player in
HER2 tumourigenesis?

An important issue concerning HER2 over-
expression in human primary breast cancers is
that this genetic alteration, primarily due to
gene amplification, is relevant but not suffi-
cient to induce transformation. The expres-
sion of an alternatively spliced human HER2
isoform encoding a receptor lacking exon 16,
which immediately precedes the transmem-
brane domain, and so called Δ16HER2 (Figure
1D). It was reported this splice variant
accounts only  for 4-9% of the total HER2 tran-
scripts, but transgenic studies provided direct
evidence of the key role of the Δ16HER2 splice
variant in HER2 transforming activity. In trans-
genic mice, tumours arose only when the
oncoprotein carried small deletions in the
extracellular domain, thus promoting
HER2/neu transforming activity through for-
mation of intermolecular disulfide bonds.21

Indeed, mammary-specific expression of the
rat HER2/neu gene induces tumours only when
accompanied by in-frame activating deletions
of cysteine residues within the wild-type
HER2/neu extracellular domain.62 The loss of
these cysteine residues appears to induce a

conformational change in the HER2 extracellu-
lar domain that promotes intermolecular disul-
fide bridges and, in turn, constitutively acti-
vates stable HER2 homodimers on tumour cell
surface able to drive mitogenic signaling.63

Athymic mice injected with Δ16HER2-HEK293
transfectants developed tumours, whereas
mice injected with HEK293 control cells ectopi-
cally overexpressing only WT HER2, did not.64

In this model, Δ16HER2 was constitutively
active supporting the hypothesis that its
tumourigenic potential is due to the ability to
form disulfide-bridged homodimers. More
recently, Mitra et al.65 confirmed the same
behavior in a breast cancer model. Indeed, they
described stable dimers in MCF7 cells trans-
fected with Δ16HER2. As expected, ectopic
Δ16HER2 expression led to increased activa-
tion of multiple oncogenic pathways, e.g., FAK,
Src kinase, phosphatidylinositol 3-kinase/AKT,
and mitogen-activated protein kinase, as com-
pared to cells expressing WT HER2. The activa-
tion of these oncogenic cascades results in a
dramatic increased of Δ16HER2-MCF7 migra-
tion and invasion. The most interesting data
were the positive correlation between
Δ16HER2 expression and positive lymph nodes
in patients with HER2-positive tumours high-
lighting Δ16HER2 as a critical feature for
HER2-breast cancer progression. This study
also anticipated the potential clinical implica-
tions of Δ16HER2 variant expression in anti-
HER2 targeted drugs susceptibility. Castiglioni
et al.64 demonstrated the lower reactivity of
trastuzumab, in comparison with other anti-
HER2/ECD Mabs binding to different
HER2/ECD epitopes. These finding suggested
that Δ16HER2 expression could be relevant for
HER2-targeted therapies efficacy. This hypoth-
esis is consistent with clinical findings indi-
cating that wild-type HER2 gene amplification
in human primary breast cancers determined a
proportional increase in Δ16HER2 levels.66

Therefore, we can speculate that decreased
susceptibility to trastuzumab observed in
breast cancer patients with HER2 FISH ratios
>867 (Table 1) can be attribute to their high
expression level of Δ16HER2. Transformation
associated with HER2 overexpression might
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Table 1. Different HER2 isoforms with their biological activities and target therapies.

HER2 isoforms Biological activity Targeted therapies used

p100 Inhibition of tumour cells proliferation Contrasting data on trastuzumab
Herstatin Inhibition of tumour cells proliferation
Δ16HER2 Oncogenic capability; increase of metastatic Lower trastuzumab efficacy; 

potential de novo tamoxifen resistance
CTFs 611-CTF Increase of metastatic potential Trastuzumab resistance

lapatinib response
687-CTF Inactive
648-CTF The same of full-lenght HER2
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reflect the increase in absolute levels of this
splice variant to a critical threshold for consti-
tutive activation of HER2. 

Besides the resistance to anti-HER2 thera-
py, Δ16HER2 was described as involved in
endocrine resistance in HER2-positive/ER-pos-
itive breast carcinomas (Table 1). These
tumours, that account for half of HER2 positive
tumours,  represent a challenge for the onco-
logical  treatment, since more than 70% exhib-
ited de novo tamoxifen resistance68 and,
indeed, continue to growth even after estrogen
depletion.69 Preclinical studies demonstrated
that Δ16HER2, but not wild-type HER2, pro-
motes estrogen-independent growth and the
novo resistance to tamoxifen treatment thera-
py in breast cancer cells in vivo and in vitro. To
date, two mechanisms can explain the acquisi-
tion of hormone resistance in breast cancer
mediated by HER2Δ16. In the first, HER2Δ16
transfected breast cancer tamoxifen-treated
cells were found to up-regulate BCL-2 expres-
sion mainly through the suppression of miR-
15a/16 compared with tamoxifen-sensitive cell
lines. Normally, BCL-2 translation is repressed
by binding of miR-15a or miR-16 to a seed
sequence in BCL-2 mRNA 3′-untranslated
regions, and loss of miR-15a/16 in several can-
cer cell lines and tumours is associated with
BCL-2 upregulation69-71 and resistance to ther-
apy.71 Consistently, BCL-2 is upregulated in
HER2Δ16 expressing tamoxifen-resistant cells
where levels of miR-15a/16 were reduced.
Authors established an in vivo model that
revealed the inability of wild-type HER2 pre-
clinical models to fully recapitulate the aggres-
sive and variable clinical nature of HER2-posi-
tive breast tumours. Indeed, similarly to clini-
cal observations, HER2Δ16-expressing
xenografts are both tamoxifen resistant and
estrogen independent, whereas consistent
with other reports,70 HER2-expressing
xenografts display only partial acquired tamox-
ifen resistance and remain estrogen-depend-
ent. The second mechanism is based on the
down-regulation of mir-342 observed in breast
cancer cells expressing HER2Δ16 and in pri-
mary breast tumours of patients who failed
tamoxifen therapy. Mir-342 controlled expres-
sion of genes involved in tamoxifen mediated
response in breast cancer cells and, indeed, its
restoration in MCF7/ HER2Δ16 sensitized
these cells to tamoxifen-induced apoptosis
with a dramatic reduction in cell growth.70

HER2Δ16 was definitely demonstrated to be
sufficient per se for mammary tumours devel-
opment as we recent reported.63 We estab-
lished the first mouse line that transgenically
expresses both human Δ16HER2 and firefly
luciferase genes. A higher tumour incidence, a
more rapid tumour growth, as well as a signif-
icantly shorter latency period (15.11 vs 28.6
weeks) in Δ16HER2-LUC transgenic mice

were observed, as compared with
MMTVhuHER2, the other mice model trans-
genic for the human wild-type HER2.72 The sig-
naling activity of over expressed Δ16HER2-
LUC revealed that the oncogenic properties of
Δ16HER2 were mediated through activation of
Src kinase.63

Notably, only 5 copies were found to be suf-
ficient to drive neoplastic transformation of
mammary epithelial cells in Δ16HER2-LUC
mice, whereas 30-50 wtHER2 transgene copies
are required to induce breast cancer in about
80% of MMTV-wtHER2 transgenic mice.73

All these findings demonstrated that
Δ16HER2 splice variant could actually repre-
sent the transforming form of HER2 oncopro-
tein. Therefore, the role of HER2Δ16 in HER2-
driven breast tumours progression and therapy
response could be underestimated. There is
the need to develop screening test for
HER2Δ16 expression in cancer tissues but,
most of all, to find compounds able to interfere
with its binding to HER2 receptor, to try to
overcome the HER2Δ16 induced resistance.

Carboxy-terminal fragments:
besides HER2 splicing processing

A subgroup of HER2-positive patients
expresses a series of carboxyl-terminal frag-
ments (CTFs) of HER2.74 HER2 CTFs can be
generated at least by two independent mecha-
nisms: proteolytic shedding and alternative
initiation of translation. In the first scenario,
metalloproteases shed the extracellular
domain of HER2 at a site proximal to the trans-
membrane domain, generating a 95- to 100-
kDa fragment, known as p95HER2, that starts
at alanine 648.74-75 Alternative initiation of
translation of the mRNA encoding HER2 from
2 internal initiation methionine at positions
611 and 687 (codons numbered according to
the full-length molecule) generates two addi-
tional p95HER2 fragments of 100 to 115 kDa
and 90- to 95-kDa, respectively known as 611-
CTF (Figure 1E) and 687-CTF (Figure 1F).
They differ in a stretch of 76 amino acids,
which includes the transmembrane domain
and a cysteine-rich short extracellular
domain.73 Even though lacking a signal pep-
tide, the 611-CTF fragment is efficiently incor-
porated into the secretory pathway and trans-
ported to the plasma membrane. Instead, the
687-CTF fragment can be found both in the
cytoplasm and nucleus.76

Pedersen and colleagues analyzed the activ-
ity of the individual p95HER2 (Table 1). They
showed that the soluble intracellular 687-CTF
fragment, despite having an intact kinase
domain, was inactive. In contrast, the two
CTFs containing the transmembrane domain,

648- and 611-CTFs, can activate several intra-
cellular signal transduction pathways.76

Interestingly, the level of activation of these
pathways is quite different between the two
HER2 CTFs. 611-CTF activates the mitogen-
activated protein kinase and the Akt pathways
to a greater extent respect to 648-CTF, because
it constitutively forms homodimers main-
tained through disulfide bonds. In contrast,
648-CTF does not seem to form homodimers,
and its activity is comparable with that of full-
length HER2.76 As a result, expression of the
611-CTF fragment leads to the regulation of a
specific set of genes. Several of these genes,
such as MMP1, ANGPTL4, MET, CD44, PLAUR,
EPHA2, ITGA2, ITGFB, TGFA, and IL-11, are
causally involved in the metastatic progres-
sion.76 Moreover, cortactin, a cytoskeleton-
binding protein involved in the regulation of
cell migration, was identified as a phosphopro-
tein regulated by 611-CTF. The authors showed
that expression of 611-CTF leads to an
increase in the phosphorylation of cortactin
and, at least, to an increase in breast cancer
cells motility (Table 1).77

According with all this evidence, it has been
shown that breast cancer patients expressing
CTFs have worse prognosis and are more like-
ly to develop nodal metastasis compared with
patients expressing predominantly full-length
HER2.78 An early study by Christianson and col-
leagues showed that the expression of
p95HER2 (611-CTF; 648-CTF) in breast
tumours correlated with metastasis to the
lymph nodes.73 Several subsequent studies
supported that p95HER2 may be used as a bio-
marker of an aggressive subtype of HER2-pos-
itive breast cancer.78,79 Retrospective studies
showed that tumours expressing p95HER2
tend to be resistant to treatment with
trastuzumab80,81 but do respond to lapatinib.82

The effectiveness of lapatinib on p95HER2-
postive tumours is not surprising because the
tyrosine kinase inhibitor also blocks the activ-
ity of the p95HER2 fragments.76 Therefore,
tyrosine kinase inhibitors may be a good ther-
apeutic approach to treat p95HER2-positive
tumours. Because both the 95- to 100-kDa and
the 100- to 115-kDa transmembrane p95HER2
fragments lack the epitope recognized by
trastuzumab, an obvious explanation for the
lack of response to the antibody in p95HER2-
positive tumours is that expression of these
fragments drives tumour growth even under
treatment with trastuzumab.

Conclusion and perspective

Despite the evidence of a potential role of
the naturally occurring inhibitors p100 and
herstatin on the wild-type HER2 and its signal-
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ing pathway, to date they do not seem to have
a possible clinical application. The most prom-
ising forms under investigation for a key role
in determining the increased HER2-positive
tumours aggressiveness and toward develop-
ment of biodrugs are the HER2Δ16 and the
CTFs. Specific assays to determine and quanti-
fy the expression level of HER2Δ16 have been
already developed64 and the availability of
transgenic mice models expressing these vari-
ants in the mammary gland will allowed to dis-
sect the oncogenic mechanism of these forms,
as well as to design new therapeutic molecules
able to inhibits HER2Δ16 dimers resistant to
the HER2 targeted drug, such as trastuzumab. 
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