
Appendices 
 

A. Derivation of the Jacobson Stockmayer model 
 

Even when a polymer is unstructured, it still possesses long range features 

that resemble a random walk. In a random walk, one observes that the 

distance between the initial starting point of the walker and the last step tend 

to gradually drift away as a function of the number of interim steps. For a pure 

random walk, the drift would be seen to occur at a rate , where  is the 

distance between each step and  is the number of steps. It is actually rather 

difficult to walk in a truly random fashion, but the image should be easy to 

visualize.   

Applied to polymers, the step length becomes the distance between 

monomers and the space is usually 3D rather than 2D. As the length of the 

polymer increases, the likelihood that the two ends will come within the same 

vicinity of each other gradually decreases. In principle, this property is true 

whether the sequence length is 20 nt or 20 sextillion nt. Though perhaps 

somewhat counterintuitive, it is as though the polymer appears to know its 

ends. In fact, it is because it doesn’t care, yet ironically, that means we can 

predict its behavior. Therefore, the negative entropy for loop formation in 

Equation (1) reflects the force that is required to constrain the two ends of the 

polymer to a fixed-distance arrangement. The entropy will become more 

negative as more diverse parts of the chain are held in close proximity of each 

other. The Jacobson Stockmayer (JS) equation was an attempt to model this 

property of polymers. 

To derive the JS-model, JS began with an approximation of the freely 

jointed polymer chain (FJPC) using a Gaussian distribution function where the 

probability of finding the two ends of the polymer chain within a distance and 

 is  
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where ,  is the number of mers, and  is the Kuhn length.   
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The Kuhn length is a measure of the stiffness of the polymer and will be 

discussed in detail in Part II of this series. The original derivation of Equation 

(A1) does not explicitly include the Kuhn length, rather, in the main text of their 

study, JS implicitly allude to the point that  is the effective link length of the 

polymer chain (p. 1602, col. 1, and Part II of same journal, pp.1611-2). By 

saying so, JS implicitly recalibrate the mer-to-mer separation distance to 

 and the number of mers ( ) to .  Hence, .   

Now, when the two ends of the chain are closed at position 1 and , the 

probability that the two ends of the polymer chain will be simultaneously 

located within the same volume element ( ) is 

 

 

 

and for a small volume  (called the bond volume, p. 1606 col 2), this can be 

approximated as 
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For this temperature independent probability model, the cyclization entropy 

due to ring closure is simply  
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where  is the Boltzmann constant.   
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Therefore 
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In the formulation, it is assumed that  and moreover, that .  Note 

that the assumed product of this cyclization entropy is a ring of  mers with 

an effective symmetry of .  In short, once the ring of monomers is closed, 

there is no way, even in principle, to find the joining point short of selective 

isotope labeling. 

When Equation (A4) was transferred to problems in double-stranded 

DNA, it was applied to small bubbles (unpaired bases forming an interior loop 

along the double-stranded helix) that occurred in mismatched regions of 

sequences. The bubbles tend to involve unpairing and therefore, in Figure 1C, 

 and  would tend to be equal: , where  is an adjustment 

for nucleation, etc. These bubbles were thought to be reasonably large, 

though that is not always exactly clear [90]. Given  is sufficiently large, it is 

then a simple task to assume a shorter segment of length , where , 

which yields 

 

  (A5) 

 

where  
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It is not clear to what extent this transformation  is allowed; 

however, JS comment that  is acceptable. For folded single-stranded 

RNA, the same approximation began to be used.  Equation (A5) is identical to 

Equation (1) and is essentially how the original expression entered into these 
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types of calculations. For particularly small values of , Eqn (A5) is usually 

substituted with experimentally obtained weights [41] to improve the accuracy 

of this expression. In this respect, the issues of Equation (A5) for small  can 

somewhat be taken as moot. 

Clearly, the original model set . The current value of  

entered the equation from a study done in Ref [21] that used this value based 

upon a theoretical calculation by Fisher [39]. Fisher determined this value by 

calculating a self avoiding random walk on a 3D lattice. In Ref [21], the value 

 was simply replaced with , and because it lead to some 

improvements, it has been retained ever since. The non-integer dimension is 

necessary because a real polymer cannot occupy the same point in space 

with another part of its own self but a statistical model like the Gaussian 

polymer chain (GPC) ignores this fact. As a result, one (very improbable) state 

for the GPC is a polymer chain that folds back and forth on its own self. In 

effect, one might say that the statistical spatial dimensions of a real polymer 

are larger than its integer spatial dimensions. This phenomenon is known as 

the self avoiding random walk. It will be shown in Part II of this Series (in the 

fifth section) that we can infer some genuine physical significance out of this 

fractal value. 

In RNA secondary structure prediction, a further correction has been to 

use experimentally obtained values for the free energy when evaluating loop 

sizes of nt.  Therefore, small values of  are in principle corrected for 

and, since in loop regions  nt, the rule of  is, to some extent, 

sufficiently satisfied to within experimental error. Granted, it is far from an 

ideal treatment, but the errors do not appear to affect these problems 

severely, or, at least, the error bars are too large to identify a definite problem.  

It will be shown in Part II (in the sixth section), that the value used for  

in current RNA structure calculations cannot satisfy Equation (A6) for any 

existing set of experimental parameters attributable to known RNA. Hence, 

the value used in practice for  is actually an empirical constant.  
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B. Distinction between RNA and protein secondary structure 
 

Because the meaning of secondary structure is so easily confused or 

muddled when discussing RNA secondary structure and protein secondary 

structure in the same sentence, it is important to explain the difference.   

Protein secondary structure refers to the tendency of a protein to form 

regular conformations in the form of alpha helices (α-helix), beta-strands (β-

strand), and a variety of turns like beta turns. Beta strands are also known as 

extended structures, particularly in bioinformatics software that predict or 

evaluate protein secondary structure. The secondary structure is contrasted 

with coil regions where the arrangement of the amino acids does not fit one of 

these regular patterns sufficiently. Protein secondary structure makes no 

reference to the relative spatial arrangement of these regular structural 

elements of the polypeptide chains with respect to each other. Therefore, 

there is no topology information and no indication of how the α-helix or β-

strands of the protein are arranged spatially. This topological information is 

encoded in the tertiary structure for proteins. Although there are examples of 

long range influence on the protein secondary structure, at least 80% of the 

protein secondary structure can be predicted based upon neighboring amino 

acid or next nearest neighbor interactions. It is, therefore, a largely nearest 

neighbor (i.e., local) feature of amino acids. 

RNA secondary structure refers to the arrangement of base pairing in the 

RNA structure. The base pairing defines a relative spatial arrangement 

between different nucleic acids in the RNA sequence. Therefore, RNA 

secondary structure does provide essential information on the topology and 

the spatial arrangement of the RNA sequence. 

The definition of RNA secondary structure has special restrictions of its 

own in that the base pairing arrangement is usually restricted to a narrow 

subset of possible base pairing patterns. The rule is as follows. Let a given 

RNA sequence be numbered from 1 to , where  is the total number of 

nucleotide (nt) in the sequence, and let a given set of distinct base pairs  

and  be defined such that the indices satisfy the following conditions (1) 

, (2) , and (3) . Then an RNA structure is called RNA 
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secondary structure if every base pair combination  and  in the set 

satisfies one of the following four conditions: (1) , (2) , (3) 

 or (4) .  Hence, the arrangements of base pairs in RNA 

pseudoknot structures, which involve base pairing of the form  or 

, are not considered in the standard definition of RNA secondary 

structure.  

Proteins can form parallel strand arrangements of β-strands or α-helices 

where two or three strands can be in close proximity. If two strands run in 

parallel, then the amino acids in the respective chains can form double strand 

spatial pairing  interactions. If three strands run in parallel in close 

proximity, then the amino acids can form triple strand spatial pairing  

interactions, where the notation indicates that the amino acid index  shares 

a direct neighbor with both  and . RNA occasionally forms tertiary 

structures containing triple strand interactions and triple helices can be made 

from RNA; however, pseudoknots are by far the most common form of tertiary 

structure interaction.  Nevertheless, in all such cases, these interactions can 

be referenced by including a separate link to both pairs:  and . It 

follows that in as much as the notation is adequate for describing RNA 

interactions, the strand notation used for RNA structures can be applied 

equally to proteins. Likewise, the entropy of folding β-strands and α-helices 

into some specific spatial arrangement in a protein structure can be evaluated 

using similar methodology as is done for RNA pseudoknots. 

  

( , )i j ( , )i j′ ′

i i j j′ ′< < < ,i j i′ ′ <

,j i j′ ′< i i j j′ ′< < <

i i j j′ ′< < <

i i j j′ ′< < <

( , )i j

( , , )i j k

j

i k

( , )i j ( , )j k



C. On defining what is the denatured state 
 

This Appendix assumes that the reader has read most of this work, or is 

familiar with the topics addressed here.   

Because of traditions and conceptual issues as well, it is not as easy as it 

might seems to define this “denatured state” mathematically.  Basically, there 

appear to be two possible ways to define this state 

● case 1: the point where . 

● case 2: in terms of : .  

 

Case 1: The point  represents a lone stationary point on the force-

extension curves (see Figures 5D and 5E) where the force vanishes and is a 

uniquely defined location on the force-extension curve.  Traditional mechanics 

would favor this position as the equilibrium position ( ) of a spring equation: 

.   

Going forward, the generalized force for these problems is 
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therefore  
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where, in this work, we have focused on , so that .  

From here, we can generalize things like the normalization constant in Eqn 

(23) to 
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and the general form for  is 

. (C4) 

 

where .   This well defined structure in the equations seems 

to militates against the use of  as the denatured position.  

However, this is exactly where we run into trouble.  There is a circular 

definition between ,  and  that forces us to define the quantity 

.  Therefore, these other quantities are only defined once  (or 

some equivalent parameter) is given. 

 

Case 2: There are also several things going for using the definition of the 

denatured state as .  The radius of gyration is proportional to  and 

therefore it represents a measurable quantity. This makes it more 

reproducible.  It is also less dependent on the collection of parameters ,  

and there are others we can invoke as well. However, it certainly does not 

lead to , which leave one questioning whether it is adequate for a 

given equation such as Eqn (44b), where we combined a hybrid Gaussian 

and worm like chain result together with some arbitrary definitions for the 

crossover point (  in particular). 

As a result, we are not off the hook in either case.  In the first publication we 

did on the CLE model, we sided with case 1. However, in later studies, we 

switched to case 2.   

We are inclined to argue in favor of  for the following reasons.   

● The error introduced by using  instead of  amounts to the difference 

of a constant.  For example, in the case of Gaussian-like equations of 

state,  and .  Let us compare  and  relative to some 

other state like .  Then  
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, 

and simplifying using the relationship  and , we 

obtain 
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 Hence, any error this might incur amounts to an additive correction 

constant and therefore only contributes to the baseline in the free energy 

per each effective cross link (or contact).   

● Second, since  is a measurable quantity from the radius of gyration, 

this is where the system spends most of its time, even if effectively,  is 

the “true” denatured state.  

● Third, for any single cross link interaction, the curve in Figure 5D is rather 

flat over a wide range of .  The more visible effects in Figure 5E result 

from the collective contribution of all the cross links as one unit.  This 

means that any error introduced by using  should be small.  Moreover, 

in many applied cases, , and therefore, the value of  

represents an upper bound.  

● Finally,  is a single value (measurable quantity) that does not depend 

on many complicated (and not so easily determined) parameters.  

 

Therefore, we continue to assign  to the denatured state in this work. 
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