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In general, renormalization is a method that is used to simplify the computation of a 

very large system with a vast number of interactions into a more manageable problem.  

Presumably, if the system is rather repetitive (like a crystal lattice) and the coupling 

between diverse parts of the system tapers off as a function of distance, we can search 

for a way to group (or effectively cluster) these local interactions in a way that 

encompasses the overall behavior, and then look at how these new groups couple over a 

much larger distance.  One might see it as looking at nearest neighbor (NN) interactions, 

grouping them, then looking at next nearest neighbor (NNN) interactions, etc.  If the 

coupling on the NNN scale is smaller than NN, there is a chance that this will converge.  

Therefore, it is a process of constructing coarse-grained structure from the fine details 

while presumably preserving the pertinent information of interest.  A polymer chain is 

essentially a 1D system (at least along the chain); therefore, we will focus on explaining 

the renormalization process for a 1D system. 

Ma [1] writes a fairly clear introduction to renormalization group theory in 

condensed matter physics. Rather dense studies can be found in the works of Wilson 

and Kagut [2,3].  Kadanoff first introduced these ideas into a condensed matter 

framework [4].  A readable report on renormalization and scaling theory in polymer 

physics is almost surely the one by McKenzie [5].  A good introduction can be found in 

deGennes famous work [6] and Fernandez has applied this kind of idea to RNA folding 

[7,8].    

In renormalization, we would start with a proposed free energy (FE) function that 

is calculated at some initial coarse-grained length scale for our system of interest, say 

( ,{ },{ })o o oG ξΔ x k , where oξ  is the length scale of the polymer, { }ox  would be a set of 

locations on the polymer chain, and { }ok  would describe some set of coupling 
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constants.  Then we would rescale these interactions of length scale oξ  to a larger length 

scale ξ , for example 2 oξ ξ=  and derive a new free energy function ( ,{ },{ })G ξΔ x k  

that still resembles the original system in FE but is now represented at a more coarse-

grained level of approximation. The renormalization method requires that we account 

for the free energy within the rescaled part as a constant, and rescale the free energy 

associated with the long range coupling   

 

1( ,{ },{ }) ( , ) ( ,{ },{ })o o o oG G Gξ ξ ξ ξ
ξ

Δ →Δ + Δx k x k   (A1) 

 

where oξ  and ξ  reflect the initial and final Kuhn length, ( , )oG ξ ξΔ  is a constant 

reflecting the local coupling between neighboring monomers on the chain, 

( ,{ },{ })G ξΔ x k  is the new function that resembles the original function 

( ,{ },{ })o o oG ξΔ x k  and retains the long range coupling interactions but are now thinned 

out over length scales ξ . The function ( ,{ },{ })G ξΔ x k  is weighted by 1/ ξ  because in 

the process of rescaling the long range coupling over a distance ξ , the influence of that 

coupling is reduced.  In a sense, the initial NN interactions are subsumed into ( , )oG ξ ξΔ  

and the quantity of interest now becomes the NNN interactions, which are presumably 

smaller.  This is the process that builds effective mers in this model.  

As an illustrative example, Fig A1 shows a polymer of length 15 mers and an 

initial coarse-grained scale 1oξ =  [mer].  The long range coupling in this polymer 

occurs between the following pair of mers (2,13)  and (3,12)  and is illustrated by the 

dotted red lines.  This structure is then rescaled to 2ξ =  [mer], the blue ovals in Fig A1.  

Because of the way the sequence was divided up, the coupling is shared between two 

effective mers, illustrated by the green dashed lines.  Let the free energy of 1oξ =  and 
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2ξ =  be represented by 1GΔ  and 2GΔ  respectively.  Then Fig A1 would be expressed 

 

1 13 2 12 315 ( 1) ( ) ( )G G G GξΔ = Δ = +Δ − +Δ −x x x x  (A2a) 

 

where ( 1)G ξΔ =  contains whatever internal and NN interactions must be accounted for 

on length scale 1oξ =  and ( )j iGΔ −x x  reflects the long range coupling due to base 

pairing interactions (in the case of RNA and DNA).  Upon renormalization,  

 

2 7 1 6 2

15 1 1( 2) ( ) ( )
2 2 2

G G G GξΔ = Δ = + Δ − + Δ −x x x x% % % %  (A2b) 

 

where ( 2)G ξΔ =  is a new constant that subsumes interactions on length scale 1oξ =  

[mer], the tilde notation is used to index the rescaled effective mers and ( )j iGΔ −x x% %  is 

the rescale FE function using these effective mers.  Since we expect that the total FE is 

left unchanged by our general rescaling, it follows that  

 

1 2G GΔ ≈ Δ .   (A3) 

 

The coupling between two independent pairs of mers is now subsumed into a single pair 

of effective mers.  The weight of the coupling is cut in half.  However, because the 

coupling is distributed over two links in Fig A1 and rescaled accordingly, the 

discernible average still resembles one bond between two effective mers comprising the 

original mers 2,3 and mers 12,13.  It is, in essence, an effective base pair.  It is also 

expected from Eqn (A3) that there are local coupling effects contained in ( 2)G ξΔ =  
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that compensate for the change in the magnitude of the long range coupling.  Between 

1GΔ  and 2GΔ , the overall FE is largely balanced to yield the same FE. 

In a second illustrative example, in Fig A2, a 20 mer sequence is renormalized 

from 1oξ =  [mer] to 3ξ =  [mer]. The other notation is the same.  The polymer is 

expressed as  

 

1 16 5 15 6 14 720 ( 1) ( ) ( ) ( )G G G G GξΔ = Δ = +Δ − +Δ − +Δ −x x x x x x  (A4a) 

 

and upon renormalization,  

 

3 56 2 6 3 3

20 1 1 1( 3) ( ) ( ) ( )
3 3 3 3

G G G G GξΔ = Δ = + Δ − + Δ − + Δ −x x x x x x% % % % % %  (A4b) 

 

Again, since we expect the FE to remain constant in the rescaling process, it follows 

that 1 3G GΔ ≈ Δ .  Now the coupling is spread over 3 mers with a corresponding 

reduction in the FE.  Nevertheless, the overall interaction and FE remain constant due to 

compensation from the constant term ( 3)G ξΔ = .  The 3 base pairs become one 

effective base pair. 

A consequence of the long range coupling in Fig A1 and A2 is that the 1D Ising 

spin model, which assumes only strong coupling between NN, is not an adequate 

approximation of the strongly long range coupling diagrammed in Figs A1 and A2.  In 

these diagrams, the long range coupling exists whether we incorporate it into the 

dinucleotide base pair (bp) interaction or not.   

Moreover, the folding is path independent: in essence, which bond forms first is 

not important in the statistical mechanics.  The only means of removing the 
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independence of this coupling is by subsuming it in the renormalization length.   

To illustrate the impact of path independence on the folding of the polymer, 

consider the folding diagram in Fig A3.  Let stem A and stem B represent unique and 

mutually exclusive interactions, i.e., there can be no mixing of any part of the polymer 

chain comprising stem A with that of stem B.  (This is admittedly unrealistically idea, 

but this is just for the purpose of illustration and more realistic examples just complicate 

the math without changing the general observations.)   

In principle, all structures are in thermodynamic equilibrium, and there is a small 

probability at some time in sampling data of the polymer’s structure, it will be found in 

the unfolded state (U) on the left or one of the two folding intermediate states (I1 and I2).  

It also describes the denaturing/refolding process of a polymer.  Due to the path 

independence, the folding through I1 (forming stem A first) is 

 

( ) ( ) ( | ) ( ),  stem A forms firstp A p B p B A p A=  (A5a) 

likewise, the folding through I2 (forming stem B first) is 

( ) ( ) ( | ) ( ),  stem B forms firstp A p B p A B p B=  (A5b) 

 

where by definition, the path independence requires that the total probability for the 

folded structure is ( ) ( )p A p B . The consequence of Eqns (A5ab) is ( ) ( | )p A p A B=  and 

( ) ( | )p B p B A= .  All models that calculate the structure of RNA from dinucleotide base 

pair interactions use additive terms in the free energy, indicating that they are assumed 

to be based on path independent interactions.  The mere assumption of that these 

thermodynamic parameters can be added implicitly implies the assumption that these 

interactions are in fact not conditional probabilities in any of these models.  
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When considering base pairing, the spreading out of the interaction over an 

effective mer allows us to think about the folding event involving the formation of stem 

A or stem B in Fig A3.  This effectively transforms the response of individual bps in a 

stem into a collective dependent interaction.  Nevertheless, it remains true for bps in the 

stem that, regardless of which bp forms first, it is still a path independent process.  The 

folding takes on a cooperative character when we include the Kuhn length in the 

evaluation of RNA folding.  Hence, due to the renormalization approach that is used, 

the CLE model incorporates cooperativity as a natural consequence of the 

renormalization process in the case of folded RNA structures.  This cooperativity can be 

seen in the unzipping of RNA in force-extension experiments [9,10] and in melting 

experiments where different stems melt at different temperatures [11-15]. 

In the case of double strand DNA (dsDNA) and dsRNA, there is no significant 

long-range coupling, Fig A4.  In Fig A4, the coupling (red dashed lines) happens over 

independent chains and is highly local.  On the other hand, the coupling described in 

Figs A1 and A2 is quite long range.  Based on the diagram in Fig A4, it is clear that 

there are no long-range interactions except between the two RNA chains.  Therefore, 

the main interactions will all be local in nature.   

The long-range coupling, shown in Figs A1 and A2, results from an interaction 

force that pushes the polymer chain apart when two points on the polymer chain i  and 

j  are squeezed closer than their equilibrium position or stretched beyond this position.  

In the non-interacting state, the root-mean-squared distance between mers i  and j  

( .rms ijr ) is a function of 1ijN j i= − +  and thus 1/2
. ( )rms ij ijr N bξ= , where ξ  is the Kuhn 

length and b  is the distance between consecutive monomers in the RNA chain.   
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The state equation for a Gaussian polymer chain (GPC) is 

 

int B 2

1 3( )ij ij
ij ij

f r k T r
r N bξ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (A6) 

 

Hence, if 2 2 / 3ij ijr N bξ> , the force between mers i  and j  is repulsive, and if 

2 2 / 3ij ijr N bξ> , the force is attractive.  From the relationship int ( ) ( / )Tf r T S r= ∂ ∂ , we 

can derive the entropy of the polymer, particularly since, in the expression, the entropy 

is independent of T  and only depends on ijN , ξ  and ijr .   From here, we can generalize 

the concepts to what has been previously published [16-19]. 

There are several points that need to be discussed.   

First, traditional renormalization theory in condensed matter physics and polymers 

is applied to infinite systems of homogeneous objects (e.g., atoms in a unit cell or 

identical monomers).  Here, although the monomers are of similar size and chemical 

behavior, they are heterogeneous.   

Second, our rescaling approach is applied to a system according to its observed (or 

at least observable) regularity.  For example, a loose, highly flexibile RNA structure 

(e.g., random interactions in a polyA sequence) would have a small Kuhn length (ξ ) 

whereas a large structure of RNA with extensive scaffolding (e.g., ribosomal RNA) 

would tend to have a large ξ .  Traditionally, the approach has been directed to scale 

identical spins progressively in 2,4,8 etc groups together (in an Ising spin model).  

Hence, traditional renormalization has been used as a mathematical tool to approximate 

the ground state of the system.  We also use renormalization as a tool, but ξ  has a 
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genuine meaning as the flexibility of the RNA.  Therefore, there should be a minimum 

in the FE where ξ  is optimized in the model.  It is possible to apply additional 

renormalization steps (as with the Ising model) to higher levels of structure.  For 

example, calculating local 3D structure of stem-loops and then considering the coupling 

of the stem-stem scale interactions.  Nevertheless, the simple 2n  rescaling process is not 

possible to maintain.   

Third, the application of renormalization is to find ξ  in this method, not to search 

for a critical temperature or critical parameters per se. Renormalization methods have 

been used in polymers, however, not in quite so applied a manner.  In short, the model 

is necessarily less rigorous and is used in an applied fashion to real problems in RNA 

structure.  Therefore, it’s not on the same ground of rigor. 

Furthermore, Kuhn length (or sometimes Kuhn statistical length) and persistence 

length are generally derived quantities measured from macroscopically observed 

quantities like the mean square end-to-end distance 2r .  Hence, it is usually cited as 

an average value.  Since we are using ξ  to reflect real RNA structure – an inherently 

regional, heterogeneous and strongly coupled system rather than a long, uniform, 

homogeneous and virtually non-interacting system – it is more germane to define ξ  in 

terms of the true regional flexibility of a given RNA structure. 

Since the model retains the main features of real space renormalization theory, this 

should not pose a significant issue.  Moreover, by using this approach in an applied 

manner, the true power and utility of this technique emerges, both as a mathematical 

tool, and as a physical concept.  Hence, we argue that by the results of the approach, it 

shows that renormalization is more than just a mere tool.  It is a fundamental property of 

at least some physical systems and one that can manifest itself at far more mundane 
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theoretical levels than the developers may have expected. 
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Figures 
Figure A1 
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Figure A2 
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Figure A3 
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Figure A4 
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Figure Captions 
 
Figure A1 
Figure A1.  Illustrative example of renormalization of a polymer chain from a 
single mer of length 1oξ =  mer to an effective mer of length 2ξ =  mers. The 
polymer chain also is folded such that there are strong intra-chain coupling 
interactions indicated by the red dashed lines (for 1oξ = ) and the green dashed 
lines (for 2ξ = ).  The effective mers are labeled with blue numbers. 
 
Figure A2 
Figure A2.  Illustrative example of renormalization of a polymer chain from a 
single mer of length 1oξ =  mer to an effective mer of length 3ξ =  mers. The 
polymer chain also is folded such that there are strong intra-chain coupling 
interactions indicated by the red dashed lines (for 1oξ = ) and the green dashed 
lines (for 3ξ = ).  The effective mers are labeled with blue numbers. 
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Figure A3 
Figure A3. An illustration of path independence for folding of the polymer in 
which stem A and stem B represent unique and mutually exclusive interactions, 
i.e., there can be no mixing of any part of the polymer chain comprising stem A 
with that of stem B. 
 
 
 
Figure A4 
Figure A4.  Illustrative example of renormalization from a single mer of length 

1oξ =  mer to an effective mer of length 4ξ =  mers for two independent polymer 
chains, where the interaction forms a structure like dsRNA.  Unlike Figs A1 and 
A2, the polymer chain does not have strong intra-chain coupling, only inter-chain 
coupling.  The coupling is indicated by the red dashed lines (for 1oξ = ) and the 
green dashed lines (for 4ξ = ).  The effective mers are labeled with blue numbers. 
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