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Abstract 
Here we discuss four important questions (1) how can we be sure that the 

thermodynamically most-probable folding-pathway yields the minimum free energy for 

secondary structure using the dynamic programming algorithm (DPA) approach, (2) 

what are its limitations, (3) how can we extend the DPA to find the minimum free 

energy with pseudoknots, and finally (4) what limitations can we expect to find in a 

DPA approach for pseudoknots.  It is our supposition that some structures cannot be fit 

uniquely by the DPA, but may exist in real biology situations when disordered regions 

in the biomolecule are necessary. These regions would be identifiable by using 

suboptimal structure analysis. This grants us some qualitative tools to identify truly 

random RNA sequences, because such are likely to have greater degeneracy in their 

thermodynamically most-probable folding-pathway.   
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1. Introduction 
RNA structure prediction methods usually rely upon a method known as the dynamic 

programming algorithm (DPA) [1-3] to find the optimal solution for the minimum free 

energy and related suboptimal structures [4,5].  Familiar examples are mfold [6,7] and 

RNAfold [8,9].  In this series, we have been exploring the prediction behavior of an 

entropy model that attempts to address the collective elastic response of multiple 

contact points in a folded RNA molecule, called the cross linking entropy (CLE) model 

[10,11]. All implementations of the CLE model also utilize a form of the DPA to 

compute either the optimal structure (vsfold5) or suboptimal structures (vs_subopt).   

Up to this point in this series, the DPA was treated like a black box that magically 

determined optimal structures for any RNA sequence.  Whereas the DPA appears to be 

a successful strategy for prediction of secondary structure and even pseudoknots, it is 

important to understand why it succeeds and what are its limitations. 

The DPA is generally applied to problems or processes where each new solution is 

built up progressively [1-3,12,13].  It requires some way to describe the process 

recursively, such that previous optimal solutions can be reused without solving them 

more than once [2,12].  Applications of the DPA typically involve time dependent 

processes (both deterministic and stochastic processes are possible [1]) or stepwise 

procedures that require selecting an optimal solution at each step and using that solution 

within all subsequent steps of the process.  For example, crystal growth involves the 

gradual accumulation of well-arranged atoms or molecules onto a seed crystal.  

Ignoring the delicate matters of thermodynamic equilibrium, in effect, as the crystal 

grows in size, there is no further change to the atoms or molecules that are already 

added to the structure.  Adjusting inventory in a stable market could be managed with 
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a stochastic DPA approach by expressing the outcomes as probabilities [1].  Likewise, 

one could picture optimizing an automobile assembly line.  There may be more than 

one good solution; nevertheless, rarely would one find it more efficient to install and 

assemble the engine as the last stage on the assembly line.  

Historically, the DPA has been applied to RNA secondary structure and 

pseudoknots without questioning how RNA folds.  Fortuitously, experimental evidence 

suggests that RNA tends to fold from smaller hairpin loops [14-16] and gradually 

accumulates more complex structures such as internal loops (I-loops), multibranched 

loops (MBLs) and even pseudoknots (PKs), Fig 1.  Moreover, this accumulation is 

local enough that new structures do not completely disrupt the previously accumulated 

structure, but simply add to it from the best prior structure.  This is similar to the image 

of crystal growth.  Hence, the DPA is a good choice for finding the optimal structure 

via the minimum free energy because the best free energy (FE) for the smaller structures 

are readily used in computing the next larger structure and remain unchanged in the 

process.  This in turn means that if a proper order of calculation can be discerned, then 

each solution need only be evaluated once and the result can be solved in polynomial 

time instead of exponential time [2].  

In the CLE model, shorter sequence lengths tend to fold more rapidly than longer 

regions (Section 4), a characteristic of RNA folding first reported at least as far back as 

Refs [14,15].  The distance dependent rate provides a natural order like the crystal 

growth example and suggests that the DPA can essentially minimize the folding by 

following that order (Section 3).  This order in the folding is what we define as the 

thermodynamically most-probable folding-pathway (TMPFP).  This is consistent with 

experimental information like the hierarchical folding model [17,18], the related kinetic 
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models [19-24] and the contact order model [16,25-30], which uses some of the same 

principles as the CLE model [11].  However, we have not really examined the 

limitations of the DPA in solving folding problems, particularly in the context of 

pseudoknots. 

In the case of RNA secondary structure, the CLE can define distinguishable folding 

times for different structures.  However, in the case of pseudoknots, the likelihood of 

encountering equal folding times is higher and we can imagine some case where two 

different structures compete for an identical site and have identical entropies and 

binding characteristics. The DPA aims at a single solution.  Moreover, in a model that 

seriously addresses folding, the possibility of rearrangements that alters prior solutions 

cannot be ruled out.  Therefore, it is important to understand the limitations of the DPA 

in the context of RNA folding problems. 

The DPA, though a methodology, is not the only issue here.  The biology also 

must select for sequences that avoid the above-mentioned pitfalls or make very good 

use of them.  We therefore would like to understand what might distinguish a real 

biological sequence with some direction in the folding from a random sequence that 

could contain multiple conformations of equal likelihood [29].   

Here, we dig into the minimizing strategy we have relied upon to examine how 

reliable the method is in pseudoknot prediction.  In particular, we are interested in 

where the DPA is likely to fail in these problems, under what conditions the DPA will 

fail, and whether suboptimal structure evaluation can improve the result.  Finally, we 

are also interested in whether the cases where the DPA fails are realistically possible to 

occur in real biology problems.   

The presentation here is largely heuristic in form.  It reflects our experience as we 
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developed the RNA structure prediction program vsfold5 and the subsequent suboptimal 

structure prediction program vs_subopt to calculate pseudoknots and some of the 

myriad of questions that such problems generate.  As a result, it is not our intent to 

rigorously address abstruse issues, but rather to explore practical and pragmatic issues 

that come with designing such an algorithm. 

To understand this discussion, the reader should be familiar with the concept of the 

cross linking entropy (CLE) discussed in Parts I through III and explained in the 

literature in Refs [10,11], and particularly in relation to pseudoknots [10].  In particular, 

it is important to understand the definition of an “effective mer”, the Kuhn length (or, in 

other parlance, the persistence length), and the general equations used to describe this 

entropy. Effective mers are used here because the global entropy and therefore the 

folding is a function that is largely dependent on the Kuhn length where the individual 

behavior of the monomers is grouped into these effective mers. The reader also needs to 

be familiar with the programming issues of applying optimization algorithms in the 

context of RNA or protein folding [10,31].  (A basic introduction to the concepts 

behind the CLE model can be found in Section 2 and its implementation using the DPA 

in Section 3.)   
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2. Review of the global entropy in the CLE model 
Most of this material should be familiar for readers acquainted with Parts I to III of this 

series.  At the end of this section, we provide some transformation notation that may 

be helpful for understanding the notation in latter parts of this work in addressing the 

general behavior of the DPA.  This section will only address the global CLE in terms 

of Gaussian equations and will be written with minimal explanation. For details, the 

reader is strongly encouraged to review in parts I through III of this series or at least Ref 

[11] (particularly App A).  These are all public access journals.   

Let N  be the number of monomers (mers) and b  the distance between 

consecutive mers on the RNA polymer chain.  Let i  and j  represent the indices of a 

pair of mers subject to 1 i j N≤ < ≤ .   

 

2.1. Kuhn length 

Let the Kuhn length (ξ ), which expresses the stiffness of the RNA, be defined in units 

of mers and, for 1ξ > , let this quantity describe a group of mers that respond 

physically as though they comprised a single unit.  Such a group of mers will be 

defined as an effective mer.  The distance between effective mers is 'b bξ= .  Hence, 

when 1ξ = , 'b b=  and the monomer-to-monomer (mer-to-mer) separation distance 

along the RNA chain would be of unit length. In RNA, ξ  is always longer than the 

mer-to-mer separation distance.  Therefore, an RNA sequence consists of /N ξ  

effective mers (or perhaps epimer, where the Greek root epi is used in the sense of 

“addition to” in words like epiphenomenon and in some ways emerges from the 

underlying polymer chemistry like epiphenomena).  Then the epimer-to-epimer 

separation distance is b bξ′ = . 
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2.2. End-to-end separation distance 

When RNA is denatured with an appropriate denaturing solvent (such as urea [32,33]), 

the RNA tend to expand to a volume where the 5’ and 3’ ends of the chain span a 

distance that is proportional to its root mean square (rms) end-to-end separation distance 

( rrms ).  In principle,  rrms  is measurable and is a function of the length of the sequence,  

 

( / )rmsr N bνξ ξ= ,  (1) 

 

where ν  is a dimensionless parameter expressing the excluded volume [34,35].  The 

excluded volume depends on the type of solvent and buffer and it depends on ijN .  

The value ν  roughly ranges between 1/ 3 3 / 5ν< <  (a subject of Part V in this 

series).  

Rather than denaturing, which is a complex process in biomolecules that is not well 

understood even for proteins [36-40], suppose one could simply turn off the amphiphilic 

interactions of the RNA mers.  Then the RNA would begin to exhibit the character of 

an ideal polymer where  ν = 1 / 2 .  In such an instance, Eqn (1) becomes 

 

2 2
rmsr Nbξ= .  (2) 

 

Since the rms end-to-end separation distance is a simple function of N , if the sequence 

is truncated to a length N ′  ( N N′ < ) , then it should follow that 2 2( )rmsr N bξ′ ′= .  It 

follows that for mers i  and j  ( i < j ), this end-to-end separation distance can be 
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extrapolated to the concept of a rms separation distance between mers i  and j  

(ij-rmsd) 

 

2 2 2
, ( 1)rms ij ijr N b j i bξ ξ= = − + .  (3) 

 

2.3. The global entropy in single-stranded RNA base pairing 

It turns out that this distance is also the variance when the arrangement of a polymer is 

approximated as a random flight model [35,41].  The likelihood of finding mers i  

and j  separated by a distance ijr  at any given moment can be expressed as the radial 

part ( ijr ) of a Gaussian function  

 

{ }
3/22

2 2 2( , ) 4 expij
ij ij ij ij ijp r r r r r

β
β p β

p
 

∆ = − ∆  
 

 (4) 

 
where  
 

2
2 2

,

3 3
2 2ij

ij rms ijN b r
b

ξ
= = .  (5) 

 

Since Eqn (4) contains no explicit temperature dependence, the entropy of the 

interaction between mers i  and j  is 

 

( )

( )( ) ( ){ }
B

3/22 2 2 2B

( , , 1) ln ( , )

ln 4 / ln

ij ij ij ij

ij ij ij ij

kS r p r r

k r r

β ξ β
ξ

p β p β
ξ

> = ∆

= + −
. (6) 
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where Bk  is the Boltzmann constant and ξ  scales the entropy contribution due to 

stem formation by a corresponding reduction in degrees of freedom because the length 

scale is based on effective mers rather than mers. 

The response of polymers is typically measured with a force-extension instrument 

such as the optical tweezers [42] and this is reported as ext ( )ijf r , where “ext” refers to 

the external force required to extend (or compress) the polymer.  Here, the main 

interest is the response of mers i  and j  when ijr  deviates from its ideal ij-rmsd 

value ( ,rms ijr ), not the response of the experimental device used to measure this response.  

The mutual response of the mers is int ( )ijf r .  This notation is discussed in more detail 

in Section 5 of Part I in this series.  Readers accustomed to the traditional form should 

read int ext( ) ( ( ))f r f r= − .   

Using the relationship int ( ) ( ( ) / )ij ij ij Tf r T S r r= ∂ ∂ , Eqn (6) becomes  

 

2
int B

1( , ) 2ij ij ij ij
ij

f r k T r
r

β β
 

= −  
 

. (7) 

 

where Eqn (7) has a minimum ( ,ij cR )  at 1/2
, ,1 / (2 / 3)ij c ij rms ijR rβ= = .  Hence, 

, int ( , ) 0ij ij c ij ijr R f r β< ⇒ >  and , int ( , ) 0ij ij c ij ijr R f r β> ⇒ < . This, in turn means that any 

pair of mers i  and j  ( 1j i> + ) has this tendency.  (Note that satisfying 

int ( , ) 0ij ijf r β =  for all ij simultaneously is not feasible and some frustration will always 

be present in this system.)   
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In RNA folding, one measures the structure in the denatured state where ,ij rms ijr r=  

and the native state ijr bλ=  (where the base pairs have a fixed separation distance in 

the native state).  The mers are simple amorphous object in this model and the 

separation distance represents the distance to the centers of these objects, not the 

chemical H-bonding distances of GC, AU, etc.  A good value is 2λ = , because the 

distance between the chains is about twice that of the mer-to-mer distance b .  The 

entropy change is therefore 

 

( )

( )

,

B
1/2,

1/2,

( , ) ( , ) ,

3 1ln 1
2

bp ij rms ij

ij
ij

S N S b S r

k N
Nξ

ξ

ξ l ξ ξ

ξ

∆ = −

   = − Ψ − −   Ψ   

. (8) 

 

where 2
1/2, /ξ ξ λΨ = .  A more general expression for Eqn (8) can be generated based 

on the material in Section 2 of Part II in Eqns (7) and (8) 

 

( ),

, ,B
(1 )

( , ) ( , ) ,

( , )ln

bp ij rms ij

rms ij rms ij

ij

S N S b S r

r rk
b N b

δ
δ

δ n δn

ξ l ξ ξ

ζ γ δδγ l
ξ l ξ −

∆ = −

      = − − −     
       

 (9) 

 

where , ( / ) ( )rms ij ijr N bνξ ξ= .  Upon substituting ,rms ijr , becomes  

( )B 1( , ) ln ( , ) 1
( )bp ij ij

ij

kS N N
Nnξ δn

nξ

ξ nδγ ζ γ δ
ξ

   ∆ = − Ψ − −   Ψ   
 (10) 
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where 1 1/( / ) ν
νξ ξ ξ λ−Ψ = , δ  is a finite positive constant [43,44] and γ (>0) is the a 

weight that corrects for the fact that real polymer chains cannot have more than one mer 

occupying the same space at the same time [45]. This is best called a “self-avoidance” 

parameter because it differs from the excluded volume associated with the pamameter 

ν  (Part V).  A common value used in RNA calculations is 1.75γ =  [14,45] 

compared to Gaussian statistics ( 1γ ≡ ).   The parameter δ  is a measure of the 

character of the correlation in the statistical model of the polymer.  The standard value 

is  δ = 2  to reflect the Gaussian polymer chain character.  However, the correlation 

could conceivably be exponential ( δ = 1) or even exponential square root ( δ = 1 / 2), at 

least in principle.  The exact form is not well known, but is generally thought to be 

Gaussian for many problems.  Finally,  

 

[ ] /2( , ) ( 3 / ) / ( 1/ ) δζ γ δ γ δ γ δ= Γ + Γ +  (11) 

 

where ( )xΓ  is the Gamma function.  Here, it is assumed that 2δ = .  Hence,  

( , 2) ( 1/ 2)ζ γ γ= + .  When 1γ ≡ , Eqn (10) reduces to Eqn (8).   

The total entropy-loss is the sum of the local correction (which accounts for the 

coarse-grained character of the effective mers) and the global contribution caused by 

stem formation [11]  

 

( )
( , )cle bp ij

bp ij
S S S Nξγδ ξ∆ = ∆ + ∆∑ , (12) 

 

where ( , )bp ijS N ξ∆  is the global contribution given in Eqn (8) and the derivation of the 
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local entropy term ( Sξγδ∆ ) is shown in Sections 3 and 4 of Part II.  For a fixed Kuhn 

length, Sξγδ∆  is a constant for a given sequence length.  In this work, this term can be 

treated as a constant.  In effect, the CLE model integrates the contributions from the 

base pairs.  The elements of Eqn (12) have been derived from first principles in 

numerous independent ways [11,46,47]. 

 

2.4. RNA folding and the TMPFP 

Returning to Eqn (7),  rrms  ( ,ij cR ) represents a separation distance where the maximum 

number of configurations are possible.  Because both squishing and stretching from 

 rrms  decreases the number of possible configurations of the RNA polymer, the entropy 

in Eqn (6) decreases.  Because ,ij cR  depends on ijN , folding rates are proportional to 

Bexp( ( ) / )bp ijS N k∆  and ( )bp ijS N∆  is a negative function for reasonable values of ijN , 

a small ijN  yields a faster rate than a large ijN .  This is the essence of the 

thermodynamically most probable folding pathway (TMPFP).  However, the unit of 

measure is the epimer (Sec 2.1) not the monomer.  This requires introducing some 

specialized notation. 

In Part I, it was shown that the effective mers in a stem are approximated by 

selecting the midpoint of the stem 

 

1
/kk

i iξ ξ
=

=∑ ,  
1

/kk
j jξ ξ

=
=∑  and 1ijN j i= − +  (13) 

 

where there are ξ  mers in an effective mer and it is assumed that ξ  is an integer.  
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This is based on observations (Section 5 of Part II) that suggest that the stem length and 

ξ  are roughly equal.  For a uniform Kuhn length (ξ ) of integer value, the indexing 

can be further simplified with the following notation 

 

/i i ξ= ,  /j j ξ=  and ( 1) / / /ijij ijN j i N Nξ ξ ξ= − + = =
 

  (14) 

 

which provides a convenient transformation between the indices of effective mers and 

the corresponding -rmsdij , 

 

2 2 2
, ( )rms ij ij ijr N b N bξ ξ= =
  

 .  (15) 

 

Working from the concepts developed in Parts I and II of this series, it follows that 

Eqn (10) can be written in terms of Eqn (14) using effective mers (which are measured 

from the midpoint of a stem of length ξ )  

 

( )( )
B

1( , ) ln ( , ) 1
( )

g
stem ij ij

ij

S N k N
Nnξ δn

nξ

ξ nδg ζ g δ
   ∆ = − Ψ − −   Ψ   

 



. (16) 

 

Where the 1/ξ  in Eqn (10) is absent in Eqn (16) because the units in Eqn (16) are 

epimers, rendering further scaling is unnecessary. 

Some care needs to be taken in reading the bar and the tilde notation.  Eqns (14) 

and (15) are used in this work because it is easy to see the transformation.  In general, 

more sophisticated notation methods should be employed.  One can construct indices 
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and transformations for cases where the Kuhn length is neither a single-valued constant 

nor an integer.  However, generalizations needlessly complicate the discussion in the 

latter part of this study without providing any greater insights.     
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3. RNA structure and the dynamic programming algorithm 
Introductions to the dynamic programming algorithm (DPA) can easily be found in 

several textbooks [2,3,12,13].  A very clear and simple explanation of the DPA in 

application to sequence alignment and RNA secondary structure can be found in Refs 

[5,48] respectively. 

The DPA is used in problems that can be solved recursively from a bottom-up (or 

possibly top-down) strategy.  When a DPA method can be used, the DPA solves the 

problem in such an order that any prior optimal solutions are simply added to the best 

solution in the current evaluation step.   One very simple example would be the way 

to calculate a Fibonacci number.  This has a recursion relation 1 2n n nF F F− −= +  with 

0 0F =  and 1 1F = .  If we start from 0F  and 1F , using the prior solution at each new 

evaluation of  n , we are applying the basic mechanics of the DPA procedure [3].  

Another important part of the DPA is that there is generally a decision that is made at 

each step of the recursion, and the best solution is used in subsequent operations.  

Therefore, an important aspect of this approach is that the prior solutions should be 

additive to the current solution and that past solutions do not change as a result of new 

information in subsequent steps.   

The purpose of this section is to help the reader understand how the recursion is 

handled in current applications of the DPA for RNA secondary structure calculations 

and how the recursion differs when applied to the CLE model.  In particular, the 

heuristics used to evaluate PKs needs to be understood.  To understand the details of 

specific implementations of the current models like mfold [49] or RNAfold [9], the 

reader should consulted the respective literature.  The details on how the 

implementation of vsfold5 works on PKs are explained in Supplement 2 of Ref [10].  
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3.1. Using the DPA in current models for RNA structure prediction 

For RNA secondary structure, the DPA was first introduced by Nusinov [50] in maximal 

matching of base pairs (bps) and later advanced by in work by Zuker and coworkers [7] 

by adding thermodynamic weights first introduced to RNA in work by Kalenbach [51] 

and Tinoco [52] and subsequently by Salser [53,54] and later Turner [55,56].   

Applying the DPA to RNA structure prediction, it is logical to index the FE in 

terms of the indices of a matrix with  i < j , because base pairing consists of the binding 

of mer  i  and mer  j  into a bp ( , )i j .  We represent the region between i  and  j  

(inclusive) by the notation [ ]i j .  If we can assume that the solution of [ ]i j  does 

not have any influence on the solution of [ ]p q , where p i>  and  q < j , then the 

recursion relation for the DPA approach can be written  

 

{ }fs bp H I ( )
, ,{ }min , , , , ,t M k

ij ij ij ij ij ij pq ij pqG G G G G G G∆ = ∆ ∆ ∆ ∆ ∆ ∆  (17) 

 

where fs
ijG∆  refers to leaving some part of the solution as a free strand (fs, green 

regions of Fig 1), bp
ijG∆  is the FE for forming a base pair (cyan circles in Fig 1), t

ijG∆  

is the FE at the terminal end of the stem (the 5’ and 3’ most position or tail of the stem, 

see labeling in Fig 1a), H
ijG∆  is the FE of a hairpin loop (H-loop, blue region of Fig 1a), 

I
,ij pqG∆  is the FE of a bulge or an internal loop (I-loop, blue regions of Figs 1b and 1c 

respectively), and ( )
,{ }

M k
ij pqG∆  is the FE of a multibranch loop (MBL, blue region of Fig 

1d). These individual terms will be explained subsequently.   
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The first term ( fs
ijG∆ ) indicates that i  consists of an unpaired base sticking out 

from 1i +  ( 1,i jG +∆ ), or j  has an unpaired base jutting out from 1j −  ( , 1i jG −∆ ), or 

both cases are true ( 1, 1i jG + −∆ ).    Hence, the best free strand (fs) solution on [ ]i j  is 

evaluated as follows, 

 

{ }fs
1, , 1 1, 1min , ,ij i j i j i jG G G G+ − + −∆ = ∆ ∆ ∆ . (18) 

 

The next term involves the Turner energy rules for base pairing formation.  There 

are two cases here: (1) it can be a closing base pair for some loop (an H-loop, I-loop, or 

an MBL) or (2) it can be any other position in the given stem. The closing point will be 

discussed later in this section.  Dinucleotide base pairs within the stem are a straight 

calculation 

 

bp bp
1 1ij ij i jG G G + −∆ = ∆∆ + ∆  (19) 

 

where 1 1i jG + −∆  is whatever contents were previously evaluated at ( 1, 1)i j+ − , which 

could be either a closing bp or another stem bp, and bp
ijG∆∆  is the FE for dinucleotide 

bp formation based on the Turner energy rules [56].  The base pairs in the Turner 

energy rules consist of the base pair at ( , )i j  within the context of the nearest 

neighboring base pair at ( 1, 1)i j+ − .  For the head of a stem with a closing point at 

( 1, 1)i j+ − , the first evaluation of a bp contribution happens at ( , )i j . 

The tail end of the stem can also be closed with a corresponding FE correction for 
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the nearest neighboring base at the terminal end of the stem, 

 

bp, bp
1,

bp, bp
, 1

bp, bp, bp
1, 1

,

min ,

t
i i j

t t
ij j i j

t t
i j i j

G G

G G G

G G G

+

−

+ −

 ∆∆ + ∆
  ∆ = ∆∆ + ∆ 
 
∆∆ + ∆∆ + ∆  

 (20) 

 

where bp,t
iG∆∆  is the FE for a terminal base jutting out from the 5’-most side of the 

stem and bp,t
jG∆∆  from the 3’-most side of the stem.   

The H-loop is calculated using the Jacobson-Stockmayer (JS) equation along with 

a closing bp 

 

H C H
ij ij nG G G∆ = ∆∆ + ∆∆  (21) 

 

where C
ijG∆∆  is the FE for forming a closing a bp (case 1 mentioned above), 

1n j i= − −  and H
nG∆∆  is the JS equation and has the form  

 

H
B( ln( ))n JSG T A k nγ∆∆ = + .  (22) 

 

The JS equation is examined in detail in Parts I and II of this series.  Briefly, JSA  is a 

constant expressing the average local entropy (Part II), γ  is the self-avoiding random 

walk correction [14,45] (Section 2) and T  is the temperature. 

The point [ ]i j  may also close a bulge or an I-loop (Fig 1b and 1c, 
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respectively) 

 

I C I asym bp,
1 2 I 1 2( , ) ( , ) t

ij ij n pqG G G n n G n n G∆ = ∆∆ + ∆∆ + ∆∆ + ∆  (23) 

 

where 1n p i= − , 2n j q= − , 1 2n n n= + , asym
I 1 2( , )G n n∆∆  adds corrections for 

asymmetry in the loops ( 1 2n n≠ ) [57] as generally implemented [9,56], I
1 2( , )nG n n∆∆  

is an internal loop penalty that depends primarily on the total enclosed length n  but 

also depends on the asymmetry of the loop, when n1 ≠ n2 .  For a bulge, either 1 1n >  

or 2 1n > , but not both.  The value of I
1 2( , )nG n n∆∆  is essentially H

nG∆∆  with 

1 2n n n= + , but JSA  differs somewhat.  Moreover, for both the H-loops ( 8n ≤ ), 

bulges and I-loops (   n ≤ 4 ), the actual penalties are generally obtained from 

experimental measurements rather than Eqn (22).    

Finally, ( )
,{ }

M k
ij pqG∆  bifurcates the secondary structure into two independent sectors: 

one between [ ]i k  ( ,i kG∆ ) and the other between [ 1 ]k j+   ( 1,k jG +∆ ).  This is 

further broken down into whether the structure closes with a multibranch loop (MBL), 

or is just two independent regions 

 

{ }
{ }

C M
, , 1,

( )
,{ }

, 1,

min
min

min

ij n m i k k ji k jM k
ij pq

i k k ji k j

G G G G
G

G G

+< <

+< <

 ∆∆ + ∆∆ + ∆ + ∆
 ∆ =  

∆ + ∆  

 (24) 

 

where  
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, 0 1 2
0

( )
m

M
n m k

k
G T C C n C m

=

∆∆ = + +∑ , (25) 

 

0C , 1C , and 2C  are all fitted parameters, m  is the number of branches, { }pq  

specifies the particular set of branches in terms of the tail of their respective stems and 

1 1k k kn p q+= − −  is the length of the free-strand segments of the MBL in Fig 1d (blue 

region with 0,...,k m= , 0q i=  and 1mp j+ = ). Branches consist of the stems that 

extend off from the MBL (Fig 1d).  Note, C
ijG∆∆  is generally different depending on 

whether the closing bp is an H-loop, an I-loop or an MBL.  However, the form is the 

same. 

 

3.2. Using the DPA in the CLE models for RNA structure prediction 

The form of the expression in Eqn (17) is the similar for the CLE model.   

 

{ }
{ }

fs, bp, , H, I, ( ),
, ,{ }

PK

min , , , , ,
min

min

cle cle t cle cle cle M k cle
ij ij ij ij ij pq ij pqcle

ij

ij

G G G G G G
G

G

 ∆ ∆ ∆ ∆ ∆ ∆∆ = 
∆

 (26) 

 

where fs,cle
ijG∆  and ,t cle

ijG∆  are essentially treated and evaluated is the same way as 

Eqns (18) and (20) respectively.  The term PK
ijG∆  refers to pseudoknots (PKs). The 

other terms have similar meaning as in Eqn (17) and their differences will be explained 

subsequently. 

The base pair formation rules are significantly changed in the CLE model.  First, 

the closing bp FE is changed to  
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C, C ( 1, )cle cle
ij ij bpG G G j i ξ∆∆ = ∆∆ + ∆∆ − +  (27) 

 

where  

 

( ) ( ){ }B

( 1, )

ln ( , ) 1 1/ ( )

cle
bp ij

ij ij

G n j i
k T n n δn

nξ nξ

ξ

nδγ ζ γ δ
ξ

∆∆ = − +

= Ψ − − Ψ
 (28) 

 

corresponds to Eqns (10) and (11) with 1 1/( / ) ν
νξ ξ ξ λ−Ψ =  and 2λ = .  The 

parameters γ , δ  and ν  are usually set to 1.75, 2 and 1/2, respectively (Section 2) 

with 2/νξ ξ λΨ = .  The explicit parameter 1.75γ = , and the implicit parameters 

2δ =  and 1/ 2ν =  are all the same in Eqn (22); Part II, Section 6.  The user can 

alter these parameters in the vsfold5 and vs_subopt implementations.   

The term bp,cle
ijG∆  requires a correction for the global entropy and has the form  

 

bp, bp
1 1( 1, )cle cle

ij ij bp i jG G G j i Gξ + −∆ = ∆∆ + ∆∆ − + + ∆  (29) 

 

where bp
ijG∆∆  is weighted with the global entropy, ( 1, )cle

bpG j i ξ∆∆ − + .  Finally, there 

is a corrective term for when the stem length ( stemL ) is shorter than the Kuhn length (ξ ), 

as discussed in Part II, section 5 of this series.  As the stem length increases, the FE for 

the stem must be updated.  Hence, whereas the value of bp,cle
ijG∆  can be calculated in 

the standard way of a DPA, some information about stem length and some backtracking 

must be included in the procedures to evaluate Eqn (29).  



24 
 

The H-loop also applies Eqn (28) 

 

H, C, ( 1, )cle cle cle
ij ij bpG G G j i ξ∆ = ∆∆ + ∆∆ − +  (30) 

 

where the form of Eqn (21) is retained. 

The case of an I-loop (or a bulge) is quite different 

 

I, C, asym ,
I( 1, ) ( , )cle cle cle t cle

ij ij bp pqG G G j i G p i j q Gξ∆ = ∆∆ + ∆∆ − + + ∆∆ − − + ∆  (31) 

 

where asym
I ( , )G p i j q∆∆ − −  only retains the asymmetry aspects ( j q p i− ≠ − ) of an 

I-loop [57] and a few other considerations associated with interior loops.  There is no 

JS weight except for a small weight at (( ) / 2 ( ) / 2 1, )cle
bpG j q p i ξ∆∆ − − − + , where the 

midpoint of the I-loop is ( ) / 2 1j i q p+ − − + .   

Likewise, ( ),
,{ }

M k cle
ij pqG∆  bifurcates the FE between two independent sectors: one 

between i, k  and the other between 1,k j+   

 

{ }
{ }

C,
, 1,

( ),
,{ }

, 1,

( 1, ) min
min

min

cle cle cle cle
ij bp i k k ji k jM k cle

ij pq cle cle
i k k ji k j

G G j i G G
G

G G

ξ +< <

+< <

 ∆∆ + ∆∆ − + + ∆ + ∆
 ∆ =  

∆ + ∆  

 (32) 

 

where in the CLE model, there is are none of the penalties.  This is because the CLE 

model focuses on stems.  Some consideration of coaxial stacking [58-60] is included 

and other information could be included in the analysis such as flexibility of the 
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branches.  

The major difference between Eqn (17) and (26) is the additional processing of 

pseudoknots in a separate buffer and then either grafting the result onto cle
ijG∆  or 

choosing the secondary structure buffer.  The details of pseudoknots and their 

treatment are explained in in Supplement 2 of Ref [10].  Briefly, there are two basic 

motif for a pseudoknot, the core PK (or H-type pseudoknot), shown in Fig 1e, and an 

extended PK, shown in Fig 1f.  

The extended PK involves joining existing secondary with a PK (Fig 1f).  

Examples of this are kissing loops.  These are evaluated in place in the interval 

between i  and j  and for a particular extended PK, the closing point of the structure 

is ( , )i j , just like a stem.  A PK, which is located at ( , )i j , has handles that explain 

how the PK should be processed from position ( , )i j . The interested reader should 

consult Suppl 2 of Ref [10] for details.  

Because of the 5’ to 3’ folding direction in the implementation of the CLE model 

(vsfold5), the core PK (H-type) takes advantage of a lead sequence lsL  ahead at lsj L+  

and saves the result until PK
, lsi j LG +∆  is evaluated.  Hence, if the best solution at [ ]i j  

is a PK and PK
,i jG∆  represents an H-type PK, then it was actually previously evaluated 

at PK
, lsi j LG −∆  (with lsi j L< − ).  This is to help prevent the possibility of secondary 

structure “crowding out” a good PK solution. 

Even when cle
ijG∆  favors PK

,min{ }i jG∆  between i  and j , a tag is added at 

( , )i j  to allow further stem building.  This prevents the situation where a PK is 

selected at ( , )i j  that blocks a stem from forming with a more favorable FE between 
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( , )i j′ ′  ( i i′ <  and j j′ > ) and ( , )i j′′ ′′  ( i i′′ ≥  and j j′′ ≤ ) when the DPA evaluates 

[ .... ]i j′ ′ .  This sometimes happens, though not very often for real RNA in our 

experience. 

The language in the previous paragraph is, unfortunately, a little vague because 

vsfold5 works with effective stems; stems that can have small bulges or I-loops breaking 

the contiguous dinucleotide bp pattern yet do not break the definition of a stem.  

Suppose that there is a simple stem between ( , )t ti k j k− +   and ( , )h hi k j k+ −  with 

0tk >  (the tail) and 0hk ≥  (the head), Fig 1a.  Then the bp ( , )i j  is clearly 

contained in this stem.  Now imagine that we add some “defects” to this perfect 

contiguous stem with a couple of small I-loops but keep ( , )i j  in part of one of these 

stems.  This is the image of an effective stem; a stem that may have defects, but 

functions as a single unit in all other respects.  The details are explained in the vsfold5 

manual and do not seem important for this discussion.  The important point is that 

vsfold5 backtracks and updates the local stem structure (or structures).  Stem bps are 

not merely calculated once and, in all subsequent operations, simply added to the 

accumulating solution as in Eqn (17).   

In this respect, vsfold5 is not a simple DPA, at least as originally proposed by 

Bellman [1] and as applied to computer-based algorithms in textbooks like Cormen et al. 

[2].  On the other hand, thinking in terms of effective mers (or maybe epimers) with 

notation like Eqn (14), the image is still that of a DPA, although there is a “fuzzy 

region” where regular updating is required.  Excluding PKs, the solution is still 

optimal; however, there is a band in the matrix elements where the solution may be 

transitory.  The overall coarse-grained solution requires more details than a cavalier 

evaluation of epimers, yet neither is it appropriate to think only on a monomer scale of 
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resolution as in the traditional implementations for RNA secondary structure.   

By natural extension, the entropy model for the PKs operates on the same 

principle.  However, because of the greater proximity of stems and the possibility for 

RNA structure to fold up in complex ways, the algorithms for scanning PKs must infer a 

considerable amount of structural information to build physically feasible PKs.  Post 

structural editing is also required.  The details are published in the Supplement of Ref 

[10].  The “editing”, in particular, suggests some similarities with kinetic models. 

 

3.3. Using kinetic models for RNA structure prediction 

There are a vast variety of alternative approaches to the DPA that try to model RNA 

folding using some kind of sampling or kinetic algorithm.  Briefly, the earliest 

approaches involved Monte Carlo methods [61,62] that have evolved into the genetic 

algorithm [63,64].  Other approaches are based on the kinetics of RNA folding 

[21,22,65,66].  Still other methods deal much closer to 3D structure and folding with 

various levels of coarse-grained polymer chain approximation [16,67,68].  

Kinetic models work from the assumption that the biopolymer doesn’t necessarily 

search its entire conformation space for the minimum free energy.  Rather, it selects the 

best local solution that is thermally stable and cannot easily come undone.  Stable in 

such a model is defined by the likelihood that the structure can unfold and be captured 

by a structure with a lower free energy.  There are merits to this approach because it is 

not necessary to evaluate all the solutions in the search space for the best one, only the 

best one at the moment.  These approaches are sometimes successful at finding native 

state structure. 

Moreover, an exhaustive search for PKs is believed to require an exponential 
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number of computations to test every possible configuration (NP-hard) [69,70].  

Therefore, some type of heuristic is required to address the pseudoknot problem.  

Rivas and Eddy [71] proposed a nearly complete DPA that processes at 6( )O N .  More 

recent approaches offer faster prediction of [72] order 4( )O N .  Therefore, the 

alternative of using a kinetic approach that might find the structure faster is a reasonable 

proposition. 

A fundamental assumption in the DPA is that the recursion elements in prior 

solutions do not require any revision with new information.  Kinetic models can have 

some advantage here if there is restructuring after connection.  For example, if there is 

post formation swapping of neighboring base pairs. Although we have not observed a 

significant amount of such swapping because most such swaps rarely offers significant 

gain, the possibility still remains and sometimes happens. 

The algorithm in vsfold5 utilizes mapping to parse through the existing built up 

structure and, in some cases, to edit prior structure to fit a good pseudoknot candidate 

into a particular configuration.  The heuristic assumes that once a good candidate is 

found, then editing can occur on the previously determined structure.  Even in 

secondary structure calculations using vsfold5, to a limited extent, the stem FE is 

revised as the stem lengthens from its initial stub.  When the Kuhn length is long, this 

can involve a large number of consecutive base pairs before the FE stabilizes to an 

incremental value as in the case of traditional DPAs.  In this respect, there are some 

elements of a hybrid kinetic model implicitly built into the heuristics of the vsfold5 

approach. 
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4. Path independence for a secondary structure model 
The most important factor in insuring that we can find a minimum free energy (mFE) is 

that the model itself is path independent. A consequence of path independence is that, 

for a polymer with a unique minimum free energy (mFE), all folding pathways will 

eventually reach the ground state and this ground state yields the same free energy (FE) 

regardless of what path was taken to arrive at the native state.   

RNA secondary structure represents a special case where every base-pair (i.e., 

cross-link) combination ( , )i j  and ( , )i j′ ′  in the set satisfies one of the following 

conditions (with i j< , i j′ ′<  and i i j j′ ′≠ ≠ ≠ ): i i j j′ ′< < < , ,i j i′ ′ < , ,j i j′ ′<  

or i i j j′ ′< < < . 

  

Lemma 1: 

Given the set of structures { }S  contain only secondary structures, the minimum free 

energy (mFE) is non-degenerate and distinguishable in { }S , the folding model is path 

independent and no rearrangements occur after formation of the secondary structure: 

then the structure with the mFE can be found using the dynamic programming 

algorithm.  

 

Proof: The mFE is assumed to exist.  If we can construct at least one pathway and all 

pathways to the ground state are independent, then we automatically find the mFE if we 

can find just one such path. Since, by definition, this must also include the 

thermodynamically most-probable folding pathway (TMPFP), all we have to do is 

search for this one pathway to find the mFE.  Therefore, the DPA, which finds the 
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optimal solutions for every sequence fragment, can also find the mFE.   

 

In the remainder of this section, we explore the characteristics of TMPFP within the 

framework of the CLE model.   

In thermodynamics, all paths are, in principle, possible in a folding model that 

claims reversibility; however, not all such paths have equal thermodynamic probability.  

In Fig 2, we show the full range of reversible pathways for a sequence of RNA with 

Kuhn length ξ  ( 5 nt= ) as it transitions between the denatured state to the native state 

through a collection of simplified intermediates. Here we assume the sequence contains 

residues that yield no strong binding interactions except for the following specific 

binding sites (Fig 2a): 1 with 1 , 2 with 2 , and 3 with 3 , where the bar indicates the 

strand’s complement. In Fig 2b, D is the denatured state, N is the full native state, Ik  

represents the transition intermediates along the path between D and N, and k←→  

refers to the path taken.  

Using the notation introduced at the end of Section 2 (and first used in Ref [47]), 

let i  and j  represent effective mers where i j<   and the effective mers are all 

numbered sequentially from 1 to N  with N  the total number of effective mers.  Let 

the distance between these effective mers i  and j  be referred to here as ( )r ij . Let 

( )ir ij  be the initial distance separating effective mers i  and j  and let that distance 

represent the denatured state (D) where ,( ) ( )i rms ijr ij r ij r= =


    (the -rmsdij ).  From 

Eqn (15), 

 

2 2 2
, ( )rms ij ij ijr N b N bξ ξ= =
  

   (33) 
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where ν  in Eqn (1) is assumed to have the value 0.5ν = . Let ( )fr ij  be the final 

distance separating ij  and let that distance represent the native state (N: no italics) 

where ( )fr ij bλ= . Working from Eqn (9), the leading term in the entropy equation has 

the form  

 

( ) ( )

( )B

( ) ( ) ( )

( ) ( )ln ( ) / ( ) ( , )
( ) ( )

f i

f i
f i

S ij S r ij S r ij

r ij r ijk r ij r ij
r ij r ij

δ δ

δγ ζ δ γ

∆ = −

       = − −          

  





 

 

 (34) 

 

where 1[ ( )] [ ]ijr ij N bδ ν ν δξ −=


  in Eqn (9).  Using ,( ) ( )i rms ijr ij r ij r= =


   and 

( ) ( )i fr ij r ij>>   for large ijN


 (Eqn (33)), it follows that  

 

( )B B( ) ~ ln ( ) / ( ) ( , )f iS ij k r ij r ij kδγ ζ δ γ∆ +    

 

where we assume the usual values 1.75γ =  [14,45], 2δ =  and, from Eqn (11), 

( , ) 1/ 2ζ γ δ γ= + . 

The major contribution to the folding kinetics begins with the diffusion of the 

polymer chain.  Suppose we have two sites ij  and i j′ ′  whose binding FE is identical 

(where the binding FE for RNA consists of the Turner energy rules [53,56,73] when 

applied to a full stem: bp
stemG∆ ).  In such a case, the rate of folding will depend mainly 

on the global entropy over the majority of the course of diffusion to the bound state 
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( ){ }

bp

B

( )( , ) exp

~ exp ln ( ) / ( )

stem
o

f i

G T S ijk ij i f k
k T

C r ij r ijγδ

 ∆ − ∆
→ = − 

 





 

. (35) 

 

where T  is the temperature, B /ok k T h≈ , h  is the Planck constant and C  is a 

constant whose details are the same for all bonds in this simple example: 

 

bp

B

exp ( , )stem
o

GC k
k T

ζ δ γ
 ∆

= − + 
 

. 

. 

Given ( ) ~ ( ) ( )i ir ij r ij r i j′ ′>>   , ( ) ( )f fr ij r i j bλ′ ′= =   (i.e., the binding interactions of ij  

and i j′ ′  are identical), then the relative rates will be 

 

( ){ }
( ){ }

exp ln ( ) / ( ) ( )( , ) ~
( , ) ( )exp ln ( ) / ( )

f i i

if i

r ij r ij r i jk ij i f
k i j i f r ijr i j r i j

δγδγ

δγ

 ′ ′→
=  ′ ′ → ′ ′ ′ ′  

 



 

 

. (36) 

 

In other words, the relative folding time depends mainly on the relative magnitude of 

the -rmsdij . Since 2 2 2( ) ( 1)( )ir N b j i bξ ξ= = − +
  , 

 

( ) 1 1
( ) 1

i

i

r i j j i
r ij j i

δγ νδγ
 ′ ′ ′ ′ − +

= <<   − +  

  

  

. (36a) 

 

Hence, the rate of folding ij  will be much slower than i j′ ′ .  
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In fact, bp
stemG∆  should be a function that is only turned on when the folding 

structure is within some critical proximity 

 

rangebp

range

( ),
 

( )0,stem

r ij rG
G

r ij r
 ≤∆∆ =  >





 (36b) 

 

where range ( )r O bλ≈  is the critical region where binding can occur.  Even if 

G∆ → −∞ , the chain still requires time to come within proximity of the actual site.  

Therefore, Eqn (36a) actually holds for any scenario at least in terms of folding times 

and the influence of the stem binding interactions can only be invoked when the stem is 

well within ranger  of meeting this condition.   

In the full CLE equation, Eqn (12) becomes  

 

( )

{ }
( , )g

cle stem ij
ij

S S S Nξδg ξ∆ = ∆ + ∆∑ 



. (37) 

 

where Sξδγ∆  is the local entropy in Eqn (12) and is treated as a constant in this study 

(see Part II, Sections 3 and 4 for details).  The second term ( ( ) ( , )g
stem ijS N ξ∆



) is Eqn (16) 

and expresses the global entropy with effective mer separation distance ijN


  and a 

physical chain separation distance ij ijN Nξ=
 

  (Eqn (15)).  The global entropy is 

summed over all cross links { }ij .  In Ref [11], it was shown that Eqn (37) satisfies 

Gaussian statistics. Different folding paths only change the order in which the 
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individual entropies are added, but do not change the total sum.   

In the notation of epimers (Section 2), for every stem ( , )i j   and ( , )i j′ ′   (where 

i j<  , i j′ ′<   and i i j j′ ′≠ ≠ ≠    ), RNA secondary structure satisfies one of the 

following conditions: i i j j′ ′< < <    , ,i j i′ ′ <   , ,j i j′ ′<    or i i j j′ ′< < <    . In all such 

instances, ( ) ( , )g
ij ijS N ξ∆
 

 can be folded in any order and generate a unique structure 

because it is either folded in a separate region ( ,i j i′ ′ <    or ,j i j′ ′<   ) or as a sub-region 

( i i j j′ ′< < <     or i i j j′ ′< < <    ) and we assumed there exists a unique mFE for the 

final state.  

In Eqn (15), the -rmsdij  is 2 2( 1)( )ijr j i bξ= − +


  .  Viewed as a continuous 

function r N∝  which forms a parabola around the N  axis.  Now let ,1rmsr  define 

the -rmsdij  for stem 1, where i  and j  point to the midpoint of the stem.  

Similarly, let ,2rmsr  and ,3rmsr  correspond to the -rmsdij  for stem 2 and 3, 

respectively.  This -rmsdij  is diagrammed in Fig 3a.  The final structure, where 

stems 1, 2 and 3 are fully formed, is diagrammed in Fig 3b.  The order of folding of 

the structure along the TMPFP, corresponding to the structures shown in Fig 2, is 

diagrammed in Fig 3c along with the corresponding structures.  Based on Eqn (36a) 

and (36b), the folding will be fastest for stem 1 and slowest for stem 3. 

To precisely model the intermediate structures in Fig 2 (and particularly the interior 

loop regions), the entropy for the specific configurations of ( , )ir i j   and ( , )fr i j   (for 

all relevant members) would need to be evaluated in Eqn (37); however, for 

3 2 1r r r>> >> , the zeroth order approximation is the separate entropy of each stem: 

( )
1 1( , )gS N ξ∆ , ( )

2 2( , )gS N ξ∆  and ( )
3 3( , )gS N ξ∆ . Therefore, given bp

stemG∆  is equal for 
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all these stems and the folding is confined to the states given in Fig 2 for all parts of the 

folding process, then the folding is most likely to follow the course 0 1 2 3S S S S→ → →  

(Fig 3c).   

Since Eqn (37) does not depend on the order of the summation, it follows that the 

CLE describes a path independent process.  Therefore, for RNA secondary structure, 

the CLE equation will yield entropy that is path independent and reversible for every 

intermediate structure all the way to the native state. Hence, the DPA is guaranteed to 

yield an optimal solution.  Moreover, because the diffusion times are a function of the 

sequence length separating two effective mers ( , )i j  , the DPA follows the TMPFP  

 

1 12 123

1 12D I I N↔ ↔ ↔  (38) 

 

where the least probable path is  

 

3 32 321

3 32D I I N↔ ↔ ↔ . (39) 

 

This order could only be reversed on the TMPFP by finding a case where 

(33) (22) (1 1)bp bp bp
stem stem stemG G G∆ << ∆ << ∆ .  Is this likely to happen?  If stem 3 is 

composed of GC, stem 2 of AU and stem 1 of GU, then this is a possibility.  However, 

it seems unlikely for several reasons. 

First, according to Eqn (36b), the weight of the Turner rules only become 

significant within a reasonable proximity of ranger .  

Second, even in bacteria from hyperthermal vents, there is, at most, a 12% bias 
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toward higher GC content because of the higher temperatures [74].  Hence, there is 

still a lot of AU in the genome of hyperthermal bacteria.  In general, one can 

understand the equal distributions of ACGU from Shannon entropy [75] where the 

information is maximized by maximizing the randomness of the sequences.  A 

sequence with AN  base of A, CN of C, GN  of G and UN  of U (with 

A C G UN N N N N= + + + ) has A C G U!/ ( ! ! ! !)N N N N N  different arrangements.  A 

sequence rich in GC would tend to reduce this maximum (by reducing the 

distinguishability of different arrangements).  This, in turn, would reduce the number 

of options for mutations.  Hence, it reduces the “information” entropy (i.e., freedom of 

choice) as defined in Shannon entropy.  We also saw in Part III in the discussion 

around Table 1, that the RNA is probably selecting sequences that are closer to an even 

mix of ACGU based on the size of the domains that are observed experimentally.  This 

means that large fluctuations in bp
stemG∆  are not all that likely. 

Third, this would eventually reach a limit because the energy difference between 

different base-pair (bp) combinations is not so large (maximum 1 kcal/mol) and the 

global entropy grows in a non-linear fashion.  Taken together, whereas such a scenario 

is possible, it is not so likely for typical RNA sequences where equal fractions of ACGU 

are found.  Moreover, even if a case could be found, the FE does not depend on the 

order of the operations in Eqn (37), only on the final FE.  Likewise, for secondary 

structure, the order is not important in calculation.  Therefore, the DPA can find that 

optimal solution.  

Since, in thermodynamic equilibrium, the result only depends on the initial and 

final conformations, and the model is completely reversible, the result can be calculated 

as though the process always proceeds along the TMPFP.  The dependence of the 
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folding on 3r  in Fig 3 is consistent with the contact order model [11,16,25], which 

predicts that the longest separation distance between the monomers determines the rate 

[11,25-27]. 

Not only are we assured that the DPA essentially calculates along the TMPFP in a 

biological process, even if folding along the TMPFP actually deviates significantly from 

the DPA calculation recursion, we are guaranteed an optimal solution as long as there 

exists a minimum FE. The DPA can find the minimum FE even when challenged with a 

very peculiar order of the stem-stem binding.  Vsfold takes advantage of this 

thermodynamic property to manage the sequential folding efficiently.   
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5. Limitations on the dynamic programming algorithm (DPA) for 
secondary structure 
We have shown that if we restrict ourselves to secondary structure (ss) and if the free 

energy is non-degenerate (there exists a unique mFE), then the TMPFP can guide us to 

finding the correct structure and we can use the DPA to find this mFE. However, what 

happens if the free energy is degenerate and, in particular, if the ground state has more 

than one structure with the same mFE? 

In Fig 4, two structures are shown whose free energies are degenerate: structure 

1AA  and 2AA , where 1A  and 2A  refer to complements of A. Fig 4a shows the 

pairing of these stems in Rivas-Eddy Feynman type diagrams [71,76]. Figure 4b shows 

the overall folding pathways and resulting structures.  In short, Fig 4 indicates that 

 

1 2 1 2(AA ,AA ) (AA ) (AA ) 0G G G∆∆ = ∆ −∆ = .  

 

Since only one structure is allowed, one of the stems cannot form.  Since the DPA 

searches for a unique mFE, the DPA cannot distinguish which structure 1AA  and 

2AA  is the mFE if 0G∆∆ = . 

Because there are a multitude of possible structures that can be generated for a 

sequence of length N, as many as 1.8N  for secondary structure alone [77], there is 

reason to think that some of these patterns could have the same free energy and that the 

minimum free energy could be a multitude of structures. This is why it is quite 

reasonable to search for other structures and consequently, to find suboptimal structures 
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and possibly alternative optimal structures.  Although 1 2(AA ) (AA )G G∆ = ∆ , the 

indexing of the matrices for 1AA  and 2AA  in the DPA are different. If suboptimal 

structures are evaluated, then it is possible to scan over the solved set of structures and 

find 1AA  or 2AA .  Therefore, it is possible to find structures with degenerate FEs 

with a systematic backtracking strategy.  

The type of structure that is observed in this sequence is more likely to depend on 

the way the RNA is folded.  Let 1(AA )N  be the number of mers between 1AA  and 

similarly 2(AA )N .  If one simply denatures the RNA and refolds it, both 1AA  or 

2AA  have equal opportunity to compete.  Based on the dependence of 

( )
1( (AA ))g

stemS N∆  and ( )
2( (AA ))g

stemS N∆  in Eqn (16), if 1 2(AA ) (AA )N N< , then Eqn 

(36a) suggests that a higher fraction of structures containing 1AA  will be observed 

because the -rmsdij  for 2(AA )N  is larger and therefore, the folding time will take 

longer (statistically).  If 1 2(AA ) (AA )N N= , then equal fractions of both structures 

are likely. 

If instead, the RNA is transcribed in the usual way (5’ to 3’) in vivo with RNA 

polymerase [78] , the fraction should be initially biased toward 1AA .  (A similar in 

vivo folding process of N to C occurs for proteins [79] and therefore, protein folding 

would also show this behavior for a similar protein sequence.)  Likewise, synthetic 

RNA is synthesized from 3’ to 5’ [80] and, given a sufficiently rapid rate of transcription, 

the initial fraction should be biased toward 2AA .  It is important to remember that 
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thermodynamic equilibrium will eventually eliminate this initial bias, approaching 

fractions similar to the refolding results over time.  Nevertheless, the role of the 

thermodynamically most-probably folding pathway (TMPFP) is seen to play out in 

different folding scenarios.  Aiming the DPA to follow the folding pathway is more 

likely to bring about agreement with the physical process. 

A degenerate minimum FE is likely to be a problem for truly random sequences 

[29].  Nevertheless, we think it arguable that most functional biomolecules are unlikely 

to have degenerate mFEs because function depends on specific signaling and 

recognition. Such examples as we mention here in Fig 4 clearly defeat these purposes 

and it is likely that natural selection would quickly eliminate such poor candidates to 

increase the activity. Exceptions would include structures like riboswitches which we 

saw in Part III tend to have two state systems that are often just slightly different in FE.  

Even these structures are selected for equilibrium distributions that clearly favor one of 

the structures [81].  Disordered biomolecules [82-85] are some other candidates that 

may have multiple states, at least until encountering the target ligand.  Nevertheless, it 

is also likely that such degenerate structures can result in genetic disorders and disease 

related mutations.   

Regardless of the particular TMPFP, since the FE is equal, the choice made by 

DPA depends on the selection mechanism.  Nevertheless, both structures are possible 

and both should be reported. Since a DPA approach can only report one answer, this is a 

limitation.  This is why we have worked to expand vsfold to handle suboptimal 

structure calculations with vs_subopt (Part III). We saw that this was of some value in 

studying riboswitches.  Currently, since vsfold computes the structure in the 5’ to 3’ 

direction, vsfold will certainly choose the first of the candidates in Fig 4 because the 
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sequential folding (5’ to 3’) is clearly organized to choose the first candidate with the 

shortest loop in Fig 4. The added functionality of calculating suboptimal structures 

helps to overcome these issues. 
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6. Path independence for a pseudoknot model 
The adaptations to the DPA to build and evaluate the local stem structure only require 

some simple backtracking procedures to adjust the CLE for each bp that is added.  In 

the case of pseudoknots, there are long range interactions due to accounting for 3D 

structural considerations and there are occasional cases where further editing occurs 

around the region where the PK is constructed.  Whereas the 3D structural issues do 

not change prior solutions, the editing steps do.  Therefore, the PK heuristic employs a 

hybrid of some kinetic features to the general DPA architecture. Here we show that the 

minimum FE structure for a pseudoknot (PK) is also a global minimum free energy 

(mFE) structure and can be found through folding the structure 5’ to 3’ only if the 

structure has a unique mFE and if internal rearrangements after folding can be neglected.  

Minimal rearrangements such as exchanging chains in the PK stem or adding stem-stem 

packing interactions are not guaranteed to yield a mFE solution.  

We return to regular monomers i  and j  in this discussion.  Let i  and j  

represent a starting and ending position of a segment of an RNA sequence such that 

1 i j N≤ < ≤  where N  is the sequence length. Let the notation [ ]i j  indicate the 

sequence between i  and j  including i  and j .  The arrangements of base pairs in 

RNA pseudoknot structures, which involve base pairing of the form i i j j′ ′< < <  or 

i i j j′ ′< < < , distinguishes pseudoknots from standard definition of RNA secondary 

structure that are described in Sections 4 and 5.  Examples of PKs are shown in Fig 1e 

and 1f. 
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Lemma 2: 

If a pseudoknot (PK) structure has a unique minimum FE, the folding to form the PK is 

path independent and there are no internal rearrangements upon formation of a PK, 

then the thermodynamically most-probable folding pathway (TMPFP) also yields the 

minimum free energy for a pseudoknot.   

 

Proof: The easiest way to see this is so is by the example shown in Fig 5.  Fig 5a 

shows the folding pathways to form a core pseudoknot (H-type).  Because we assume 

no internal rearrangements, the folding of the core PK is path independent regardless of 

whether the system might fold in a biological process of 5’ to 3’, a synthetic process of 

3’ to 5’, or “refolding” in which all parts of the sequence can fold simultaneously.   

Fig 5b shows the folding pathways to form an extended PK.  The folding structure is 

far more complicated.  Particularly notable are the dashed lines indicating some unique 

pathways available in the independent process of refolding.  In refolding, diverse parts 

of the sequence can fold simultaneously with a high likelihood of the two stem-loops at 

the bottom of Fig 5b forming first.  Nevertheless, every path is accessible, there are no 

rearrangements, and the FE of the PK is assumed to be unique and a minimum.  Since 

any pathway is permitted, the TMPFP is also allowed.  It follows that, for this 

(comparatively) simple system, the DPA is able to find the minimum FE by following 

the sequence of calculations from 5’ to 3’ most characteristic of the actual folding 

environment and therefore the TMPFP. 

 

A schematic of RNA folding along the TMPFP is shown in Fig 6 where an initial 

folding structure is shown in Fig 6a and the final structure in Fig 6f.  Structures jutting 
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out from the main chain are called level 0 structures, which are indicated by the hatched 

black lines surrounding different structures in Fig 6.  As the structure grows 

(progressing along the arrows in Fig 6), the levels increase with the previous level 0 

structures shifting to subdomains at level 1 (c.f., Figs 6a and 6b, the purple hatched 

lines) and level 2 (c.f., Figs 6d and 6e, the green hatched lines).  Fig 6a shows two 

independent stem-loops jutting out of the main chain at level 0.  These become 

subdomains of an MBL in Fig 6b and the MBL becomes the level 0 structure and the 

branches make up subdomains. In Fig 6c, a new stem-loop begins forming 3’ of the 

MBL in a separate domain of level 0 structure. This stem-loop also becomes a 

subdomain via an I-loop in Fig 6d.  Fig 6e shows yet another stem-loop forming and 

the MBL and second stem-loop complex forming an extended PK.  The level 1 

structures stem-loops are promoted to level 2 structures, the MBL and stem-loop 

complex to level 1.  Fig 6f shows the new stem-loop forms a core PK and the extended 

PK is observed to go through some internal rearrangement. These structures show a 

modular behavior and hierarchical folding largely as proposed by Westhof and 

coworkers [17,86-88]    The core pseudoknot (H-type pseudoknot) and extended 

pseudoknot modules of Fig 6f that have a 5’-input and a 3’-output and exist as 

independent (thermodynamically stable) entities (domains) [10], depicted in Figs 1e and 

1f respectively.   

The first question is whether forming the PK can corrupt an alternative secondary 

structure forming in the same local region [ ]i j  of an RNA sequence.  Though it 

occasionally occurs, it is not so common for biological RNA to share a common closing 

point ( , )i j  in a stem of secondary structure with the 5’-input/3’-output of a 

pseudoknot (a PK module). 
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To overcome this potential problem, in vsfold, two buffers are used. One buffer 

contains the best secondary structures and the optimal level 1 (and greater) structures 

(the current structure and the previously solved modules).  For extended PKs, the other 

buffer contains attempts to fit new structure against the first buffer with pseudoknots (if 

any are found) on the same interval [ ]i j .  For core PKs, the PK search buffer scans 

ahead 3’ of j  with a leader free strand 2ξ  nt in length.  Therefore, a core PK found 

on [ ]i j  was determined prior to evaluation at [ ]i j .  This forward scanning is 

important because sometimes the secondary structure can “crowd out” a good PK.  

When a PK module is found at some 5’-input/3’-output point ( , )i j  with a better free 

energy (FE) than the existing structure on the interval, the location is tagged and the 

pointer (or link, as described in Supplement 2 of Ref [10]) of whatever existing optimal 

secondary structure domains present on the interval [ ]i j  (without the PK) is saved.  

Although the point ( , )i j  is tagged as a PK because it is the mFE on [ ]i j , 

information about the secondary structure on that interval is not destroyed.  For 

example, when moving to [ 1 1]i j− + , a stem that is replaced by a PK tag at ( , )i j  

can be recovered when a contiguous part of that stem is preset at ( 1, 1)i j− + .  If the 

stem turns out to be more stable than the PK on the new interval, it will dominate the 

level 0 domain structures and, although optimal at ( , )i j , the PK will generally be 

ignored in further calculations (running 5’ to 3’).  The tag is preserved.  In the CLE 

model, because it also considers Kuhn length, the strength of a stem can grow as its 

effective length increases (e.g., see the discussion in Part II, Section 5).  Over a 

“fuzzy” interval of ξ  ( i  to i ξ+  and j ξ−  to j ), the FE can change. 

In effect, the DPA is actually optimizing the best solution of two buffers.  Given a 

unique mFE exists on [ ]i j , choosing the best solution (status quo vs new 
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pseudoknot) guarantees that an optimal solution is found in the modules comprising 

level 1 and greater structures if they remain otherwise unchanged.1  Moreover, because 

the level 0 structures themselves build up gradually along the 5’ to 3’ folding pathway, 

and eventually become themselves level 1 and greater subdomains, the internal structure 

of the subdomains are also optimal as long as there are no significant internal 

rearrangements after folding and becoming structure at level 1 or higher. 

We assume that it is given that we have a solution for the mFE of the secondary 

structure on any interval [ ]i j . We are assured that given a secondary structure with a 

mFE exists on the interval [ ]i j , we can find it with the TMPFP and DPA.  If that 

secondary structure is also a (level 0) isolated secondary structure, then the structure is 

also the optimal secondary structure in [ ]i j .  

Given structure (a) in Fig 7a, with mFE (a)G∆ , is the best secondary structure on 

[ ]i j , and let the structure in Fig 7b be the mFE for some core pseudoknot on the same 

[ ]i j  and let (b) (a)G G∆ < ∆ .  Since the core PK (structure (b)) is a module on 

[ ]i j  and (b)G∆  represents the mFE of this segment, according to Lemma 2, (b) is 

also the best structure on [ ]i j  and (b) is a registered (tagged) structure that exists on 

this interval. 

If [ ]i j  is expanded to [ ' ']i j , where  

 

                                                   
1 In constructing the vsfold algorithm, we have of necessity assumed that only reasonably sparse 
distributions of PKs are found.  In principle, such a strategy will distinguish the best structure given a 
mFE exists for each interval considered.  However, practically speaking, building an algorithm to 
withstand the full onslaught of complexities of some test sequence that has wildly varying binding energy 
properties (if such exists) is surely not for the faint of heart.  Vsfold is fairly robust, but has not been 
tested to an extreme level.  The intended purpose of Vsfold is to solve observed biologically relevant 
RNA and no effort has been made to find artificial sequences that could achieve extreme levels of testing. 
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,
[ ] ,

,

i i j j
i j i i j j

i i j j

′ ′< =
′ ′ ′ ′→ < >
 ′ ′= >

  (40) 

 

then the interval is changed and we must know the set of structures that occupy this new 

interval.  Hence, if further sequence is fit and (c) (b)G G∆ < ∆  on [ ]i j′ ′
  (Fig 7c) 

according to Eqn (40), then structure (c) is the mFE. Likewise, if further we can say that 

(d) (c)G G∆ < ∆ , then structure (d) is the mFE on [ ]i j′ ′
 , Fig 7d. 

If these modules are then incorporated into multibranch loops (MBLs) or internal 

loops (I-loops) and, excluding special boundary conditions, the modules remain 

independent and form as before without change over the boundary. Therefore, if, within 

an I-loop or an MBL, the pseudoknot (b) on [ ]i j  or (d) on [ ]i j′ ′
  is found to yield 

the best connecting element, then the secondary structure plus this pseudoknot represent 

the mFE for the sequence.  On the other hand, if ( , )i j  is an intermediate point on a 

stem and the forming stem is the best FE, then, whereas the PK tag remains, the solution 

set becomes the stem.  With vsfold, for level 1 structures and greater, the modules are 

independent and therefore assumed to form a stable sub-domain that is not changed.  

With suboptimal structure calculations, selection is directed to finding suboptimal 

modules of the specified level.  

Hence, giving that there exists some unique mFE on an interval [ ]i j  (and given 

that the number of viable PKs is not too excessive), we are assured that we can find that 

solution because we can explore two different buffers in a given interval (one containing 

the best level 0 domain structures and the other containing new pseudoknot 

information) to determine whether PKs, stems or a combination thereof form that best 
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structure.  

Nevertheless, it is important to point out that there is some reasonable possibility 

of an internal sub-domain rearrangement (as in the transition between Figs 6e and 6f).  

As the structure compacts, there would be room for additional sub-domain interactions 

to form.  There is no guarantee that the structure will not change.  Nevertheless, 

though exceptions may exist, it is more likely that a precursor structure resembling the 

final one will naturally fold up, such that the degree of rearrangement should not be 

enormous.  There are some provisions for some internal structural interactions worked 

into the vsfold algorithm when folding PKs.  In particularly, considerable attention was 

given to chain swapping as in Fig 6e and 6f in the extended PK (and similarly for core 

PKs).  Large scale restructuring would be very difficult to model this way. 
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7. Limitations on the dynamic programming algorithm (DPA) for 
pseudoknots 
The problem of a degenerate ground state for secondary structures was considered in 

Section 5. Here, the case of pseudoknots (PKs) is considered. 

In Fig 8a, a group of equally possible secondary structure loops and a pseudoknot 

linkage are shown. The weights are such that  

 

1 2 3 4(AA ) (AA ) (AA ) (AA )G G G G∆ = ∆ = ∆ = ∆  and 1 1 3(AA ) (A A )G G∆ = ∆ , 

 

in short, somehow, their free energies are all equal with a similar thermodynamically 

most-probable folding pathway (TMPFP). Given this is so, which is indeed rather 

unlikely, the native state would contain two possibilities: Nss and Npk (Fig 8b the gray 

box to the right). The pathways are equally distributed, and any and all of these 

structures searched. In such an example, it is likely that vsfold would choose the 

pseudoknot simply for the fact that this structure could be created first along the TMPFP.  

There is no way for a DPA to decide which structure (Npk or Nss) is the correct one in 

such a case. 

Therefore we make the following observations. 

(1) If a sequence contains a unique minimum FE (mFE) and there are no internal 

rearrangements, then the DPA strategy is sufficient to find the optimal structure. 

This was shown in Sections 4 through 6.  The DPA can be designed with the 

particular TMPFP model (e.g., 5’ to 3’ folding or refolding from the denatured state) 

because the variance in the average base pair FE is less than 1 kcal/mol and 
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therefore a significant determining factor on the rate mostly results from the global 

entropy (as shown in Section 2, Eqn (36a)).  

(2) If the mFE is degenerate and there are no internal rearrangements, then more than 

one solution is equally possible and the solution is not unique; however, evaluating 

suboptimal structures can overcome this weakness.  All that can be expressed in 

such a case is the distribution of structures at (or near) the mFE.  In such a case, 

most likely the first structure encountered will be selected by the DPA. To find these 

alternatives, suboptimal structure approaches are required.  Again, the DPA can be 

designed with the particular TMPFP model because there are no internal 

rearrangements and because the folding pathway will tend to follow the kinetics 

suggested by Eqn (36a).  Since the DPA solves all structures and there are no 

internal rearrangements of the FE, these alternative mFE structures can be found by 

backtracking. 

(3) If the mFE is unique but there are internal rearrangements, then an optimal solution 

can only be conditionally guaranteed.  For example, if the PK is optimized by 

chain swapping after an editing operation, then the PK module is optimal and stable.  

Then, as in case (1), the DPA can be organized to follow a similar recursion order as 

the TMPFP.  However, if the PK later disassembles, the FE is no longer optimal or 

requires corrections to make it optimal.  Such procedures deviate, at least, from the 

general concepts of the DPA strategy. 

(4) If the mFE is unique, but the heuristic cannot detect the structure, then the approach 

will fail.  For example, if two completely closed stems should spontaneously swap 

chains with each other, then there is nothing for the vsfold heuristic to grab hold of.  

Both the DPA and the TMPFP would fail.  The TMPFP assumes that global folding 
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dominates and that the variance is small in the local interactions and, fundamentally, 

the DPA depends on static solutions.  It may still be possible to overcome this with 

a more sophisticated approach such as the 6( )O N  DPA proposed by Rivas and 

Eddy [71] or and Lyngsø and Pedersen [70].  However, the concept of “folding” is 

lost.  The vsfold5 heuristic assumes that there is some extant structure already 

formed that leads and directs the formation process.    

(5) If the base pair FE varies drastically and arbitrarily over the entire free energy 

surface, then an optimal solution can only be conditionally guaranteed.  The DPA 

depends on distinguishable free energies and works best when the fluctuations 

between successive steps are not large [1].  If bp FE varies drastically (e.g., 

jumping erratically between -1 kcal/mol and -106 kcal/mol), then case (1) and (2) 

could be solved with a DPA (in principle), but cases (3) and (4) are far from 

guaranteed.  For the TMPFP, it is important to apply Eqn (36b) to the bp FEs.  

Nevertheless, the success of current approaches largely depends on the relatively 

small variance of the bp FE around 1±  kcal/mole.  A highly variable landscape 

would be better treated with other approaches. 

 

In general, most of the problems so far encountered in practical application of this 

heuristic to RNA structure prediction including PKs satisfy the criteria in case (1).  The 

RNA structures that form PKs often already have nearly correct modules of secondary 

structure ready for forming a PK, as in Fig 6a-e.  Case (2) may happen, but perhaps 

most of the degenerate pairing is limited to non-Watson-Crick interactions in biological 

RNA.  It appears the chain swapping in Fig 6f (case (3)), although allowed, rarely 

improves the FE.  This is probably largely because this happens at the expense of 
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losing a bp in the complementary module.  In the end, the improvement is negligible.  

It appears that natural selection has eliminated aberrant sequences and that these 

calculations are largely doable with a DPA and the heuristic strategy employed in 

vsfold5. 

In case (2), natural selection is likely to have eliminated structures highly 

degenerate in FE in functional RNA because folding becomes highly error prone and no 

native state can be distinguished.  Alternatively, natural selection may choose these 

structures if the purpose is to form disordered regions.  Therefore, just as there are 

regions of disorder in proteins [82-85], it is likely that there are regions of disorder in 

RNA and DNA.  For example, H-loop (Fig 1a) with lengths greater than 8 nucleotides 

are often evaluated using the Jacobson-Stockmayer equation and therefore have a 

uniform FE with no well-defined order.   

Most uncertain is case (3) where internal editing is required to build a full PK.  

The two buffer system where secondary structure and PKs can be compared and a 

scratch buffer, which tests these editing solutions before writing them into the PK buffer, 

appears to be sufficient for many problems when editing on the PK yields a stable PK 

that does not break up at a later step in the DPA calculation.  However, selection rules 

are not simple, and sometimes the PK can break up.  In the object oriented code of 

vsfold5, many of these issues are addressed by various memory tags; however, this 

remains a stability issue with the heuristic.  Because of the instabilities in the structure 

that result from this type of issue, it remains a current issue of research in developing 

future versions of this algorithm.   

Whereas case (4) is possible, up to now, this has not proved to be a problem.  The 

most likely situation where this might occur is when there is chain swapping between 
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two fully formed stems.  For biological sequences, such a case is more likely when a 

mis-folded structure refolds to the correct one.  Normally, this should be a suboptimal 

structure.  The other possibility is the parallel alignment of two or more stem structures 

where the coupling is between stems.  This can be addressed to some extent even in 

the current implementation if coupling information is available.   

Cases (3) and (4) are most likely to occur if one attempts to fit randomly generated 

RNA sequences [29]. Such structures can exist in equilibrium with neither a means to 

distinguish which structure is correct nor a way to know if the minimum FE is found.   

Case (5) is mentioned because it is important to understand the limits of these 

methods.  If the FE surface took on extreme and arbitrary values that had no 

correlation with the natural folding of a sequence, for example, arbitrarily large negative 

binding free energies in arbitrary locations ( , )i j  in the sequence mixed with moderate 

values, this problem would become far more difficult.  However, it is likely that the 

reason why a model with unrestrained delta functions appears so foreign is because the 

free energy expressions are too simple.  The DPA depends largely on the fact that there 

is not so much variation in the free energy.  It is because of the general regularity of the 

monomers and their binding responses that we can depend on a TMPFP strategy even in 

principle.  If the energies actually varied so arbitrarily, as in (5), then it is likely that 

the only way to know a solution is to do an exhaustive search. 

Therefore, there are limits to a general fitting heuristic (like the vsfold5 approach) 

but for natural functional RNA, such heuristics are probably sufficient in general.  If 

very complex landscapes were the subject of these problems, perhaps only an 

exhaustive search would be adequate.   It is exactly because structures fold in a 

regular way in biologically relevant RNA that we can turn to heuristics to help make the 
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search for RNA structure more successful.   

In conclusion, in this study, the underlying optimization method known as the 

dynamic programming algorithm (DPA) has been examined in the context of RNA 

folding.  Under conditions in which no rearrangement of chains occur and a unique 

minimum free energy mFE exists, if the recursion in the DPA follows the 

thermodynamically most-probable folding pathway, then an optimal solution can be 

reached (for a given folding scenario).  This would be true even when the problem 

involves pseudoknots.  On the other hand, if the mFE is degenerate or there are 

internal rearrangements of the chains that occur, then the mFE cannot be guaranteed.   

At least for typical RNA biopolymers, it appears the DPA is largely successful.  

Most functional RNA appear to have little or no degeneracy and do not appear to 

rearrange.  The reason it is successful is mainly because the natural selection has 

essentially tuned the folding behavior to reach the native state.   It is because we have 

of these regularities that it possible to succeed at these types of calculations.   
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Figure Captions 
Figure 1 

Figue 1. Examples of secondary structures and pseudoknots and the corresponding 

notations. The green chains represent free strand regions outside of the particular 

structural module. (a) A simple hairpin loop (H-loop, blue region) and stem 

(crosshatched regions), (b) a bulge, (c) an interior loop (I-loop), (d) a multibranch loop 

(MBL), (e) a core pseudoknot (H-type) and (f) an extended pseudoknot.  The 

parameters n , in  and jn  refer to the length of the free strand (blue) in a given loop. 

The stems are indicated by the red bar and black cross hatch.  Base pairs and 

dinucleotide base pairs in the stem are marked in the Figure with the light blue circles.  

A distinction is made in this figure between free strand located in a loop region (blue) 

and free strand that has no loop associated with it (green).  

 
 
 
Figure 2 

Figure 2. Description of the all the folding pathways of a special RNA that only permits 

unique stacking at the specific locations stem 1, 2, 3.  All other positions are given as 

impossible by specific pairing rules.  (a) The strand segment’s interaction and labeling 

where 1  is the complement of 1, etc. (b) A diagram of all the folding pathways that are 

possible for this particular structure. Here, D means denatured, N native state, and Ix 

(x=1,2,3, etc.) is an intermediate state. The numbers indicate the stem indices and the 

numbers over the arrows indicate which transition is taking place.  
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Figure 3 

Figure 3. (a) Description of the end to end bond distance in terms of its parabolic 

dependence of kr  ( 1,2,3k = ) in the GPC model. Here, 1r , 2r , and 3r  correspond to the 

respective distances formed between effective mers ( , )i j  . (b) A simplified stem-loop 

representation of the native state in which the red bars correspond to the stems and the 

green circles correspond to the loops. (c) Using the simplified representation in (a) and 

(b), a depiction of the character of the TMPFP (So, S1, S2, and S3) as the RNA folds 

from the denatured state So through a series of intermediates (S1 and S2) to the native 

state S3.  The CLE can handle details of the problem were we to choose to calculated 

the minute details of such intermediates and the exact differences in their entropy.  

However, this is not necessary because the change in the entropy only depends on the 

initial state and the final state in thermodynamic equilibrium.   

 

 

 

 

Figure 4 

Figure 4. An example of a toy model with degenerate free energies — two competing 

secondary structures of equal mFE. (a) The Rivas and Eddy Feynman diagram [71,76] 

and a map of the structure lined out on the sequence (similar to Fig 2a). (b) The folding 

pathways available to this sequence.  
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Figure 5 

Figure 5. A diagram of the folding of pseudoknots with no internal 

rearrangement at any stage of the folding. (a) Folding of a core (H-type) 

pseudoknot.  (b) Folding of an extended pseudoknot.  The notation 5’→3’ 

refers to the way RNA is expected to fold during transcription and 3’→5’ 

indicates a hypothetical folding direction possibly occurring during production 

of synthetic RNA. The dotted line in (b) indicates the unique features of a 

refolding experiment where the entire sequence can fold simultaneously.  

Upon folding, all pathways are equally accessible to all directions of folding; 

however, at the immediate point of removing denaturing solvents, this 

pathway is unique to refolding or some process that delays folding at the 5’ 

end of the sequence in biological systems.  The labels N and D indicate 

native state and denatured state, respectively. 
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Figure 6 

Figure 6. Schematic depiction of RNA folding in its typical 5’→3’ direction and the 

corresponding hierarchy of levels that gradually build up as modules of RNA structures 

build up.  The folding progression from a to f is explained in the text.  As the 

structure grows, the previous level is promoted to a higher level (subdomain) which 

roughly corresponds to a basic motif or module where level 0 structures are indicated by 

the black dashed lines, level 1 structures by the purple dashed lines and level 2 

structures by the green dashed lines.  The pseudoknot structures in f are treated as a 

single unit with an input and output point along the main chain (Figs 1e and 1f).  The 

secondary structure inside is then decomposed into its original modules as it folded.   

 

 

Figure 7 

Figure 7. Examples for showing the minimum free energy (mFE) on interval [ ]i j  

and [ ]i j′ ′
 .  (a) Secondary structure is the mFE on [ ]i j . (b) For the same 

secondary structure, after a pseudoknot is added such that (b) (a)G G∆ < ∆ , the 

pseudoknot on [ ]i j  must be mFE. (c) Secondary structure is mFE on [ ]i j′ ′
 . (d) 

For the same secondary structure, after the pseudoknot is added such that 

(d) (c)G G∆ < ∆ , the PK must be the mFE on [ ]i j′ ′
 . 
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Figure 8 

Figure 8. A case where a pseudoknot structure and secondary structure all somehow 

have exactly the same free energies. (a) Rivas & Eddy Feynman diagram [71,76] of 

the interaction of these stems. (b) the full set of pathways possible for this system.  
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