
Supplement S2: Methods: the vsfold5 algorithm 
Here we present the basic concepts behind the vsfold5 approach. In Section S2.1, we briefly review 

what algorithms have been (or are being) used to address the pseudoknot problem (for reference). 

Section S2.2 explains how the maps define the secondary structure and pseudoknot structure. In 

Section S2.3, the time, memory and structural complexity are described. Finally, Section S2.4 

provides a general explanation of the concepts that are used to estimate the free energy when 

pseudoknots are considered.  

Vsfold uses a dynamic programming algorithm (DPA) to find the minimum free energy (mFE) 

using the cross linking entropy (CLE) model [1]. For solving pseudoknot (PK) problems, a method 

of handles, exit tags and maps has been developed. In addition, many tools are built around these 

handles and mapping methods. These tools permit a methodology that considers the context of the 

structure. In total, these techniques permit back editing of structural data and free energy (FE) data.   

The details of the entropy and FE contributions to PK formation are expected to advance well 

beyond the rather simple models developed here. The current discussion on the model is meant to 

show that this modeling approach can be used to determine any form of structural information that 

exists to at least the level of resolution that are built into the model itself. 

 

S2.1. Existing pseudoknot algorithms: a brief history 
Techniques for solving pseudoknots fall into roughly six widely overlapping categories.  

Loop matching strategies by and large are the oldest and currently are still utilized with other 

techniques. Early methods employed free energy to weight the loops [2,3] and Monte Carlo 

techniques [2] to find the best pseudoknot. A recent developed approach (PLMM_DPSS) employs 

free energy weight of loop fragments and special features of pseudoknots to discriminate likely 

structures and reports computation times (known as time complexity) of order  and 2 logCN N
2N  in memory, where N  is the number of nucleotides in the sequence and  is a constant [4]. 

Similarly, HotKnots is a heuristic approach that builds up candidate structures by adding fragments 

of secondary structure one at a time (from secondary structure calculations) and allows multiple 

partially formed structures [5].  

C

Folding also has a long history, particularly the genetic algorithm [6]. More recently, Cao et al. 

have developed a realistic lattice model of the RNA sequence backbone [7]. Likewise, KineFold is 

an elaborate local folding model that handles sequential 5’ to 3’ folding [8,9]. Notable in these latter 

two methods is that realistic considerations about the three dimensional (3D) structure of a 

pseudoknot and polymer dynamics are seriously considered in the models. However, convergence 

for all these folding algorithms is typically slow and except for Cao et al. (which is 6N ), not 



necessarily guaranteed.  

Other techniques consist of alignment of sequence or structure. One of the earlier systematic 

approaches employed maximum weight matching (MWM) for sequence alignment including 

pseudoknots [10]. More recently, dynamic MWM [11] has also been proposed. These can run rather 

fast, but suffer some loss of accuracy. A hybrid method of loop matching with thermodynamics and 

sequence alignment known as iterative loop matching (ILM) is a significant extension of the original 

MWM approach [12]. PSTAG is a structure alignment technique using pair stochastic tree adjoining 

grammars [13]; an approach that has its origins in studies in language processing [14]. A language 

processing strategy is potentially powerful [14,15]; however, they are rather costly in time 

complexity ( 5N ) and memory ( 4N ) [13]. A simplified approach that applies only the parsing part 
of this procedure was also developed with some success [16]. Of these alignment strategies, ILM 

claims the smallest time complexity ( 4N ) and memory ( 3N ).  
Recently, a hybrid method has been developed that employs other methods to gain a consensus 

for H-type pseudoknots [17].  

The last two groups involve exact thermodynamic models that follow in the tradition of the 

secondary structure calculations. Of these, the first group finds only the mFE with no suboptimal 

structures. The most precise model, PKNOTS, that guarantees the minimum free energy is 

computationally costly in time ( 6N ) and memory ( 4N ) [18]. Recently, a simplified approach has 
been developed that sacrifices some detail by applying canonical rules but only requires a time of 

4N  and memory 2N  [19]. Knowledge of the structural features of typical pseudoknots is used in 
this approach to help in the search and reduce the search space [19]. The final strategy follows in the 

traditions of partition functions for secondary structure [20] and therefore provides the possibility of 

suboptimal structure prediction [21].This approach sacrifices some detail and has a costly time 

complexity ( 6N ).  
Of these approaches, in general, thermodynamics has been the poorest performer both in 

prediction [22] and generally at finding the correct mFE of any structure [19].  

Vsfold4 is a thermodynamic method that finds the minimum free energy [1], uses the sequential 

5’ to 3’ folding direction of a biological context, and uses the cross-linking entropy model (a 

theoretical model [1]) to find the structure. It has scored close to 80% success on secondary structure 

predictions of a complete genome of tRNA sequences, which approaches the typical success of 

sequence alignment approaches. However, vsfold4 can only calculate secondary structure, which 

restricts its utility. The current version, vsfold5, has made the important leap to predicting 

pseudoknots, and, at the same time, does not add significantly to the overall time complexity of the 

calculation. 
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S2.2. Vsfold5 Mapping methods 
Vsfold5 uses pointers to map the secondary structure, and handles and a lookup table of exit tags to 

link different segments of secondary structure together to form different parts of the pseudoknot. 

There are other formal mapping methods [23], but for the problems that are addressed here, the 

approach explained in this work appears to be more applicable. 
Here we define the indices  and i j  represent residues (base i  and base j ) in the RNA 

sequence with  and the indexing runs successively from the 5’ end to the 3’ end of the 

sequence. A base pair (bp) that is formed between base  and base 

i j<

i j  is indicated by the ordered 

pair . ),( ji
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Supplement Figure S7. Characteristics of a pointer located in a stem, or when 

 at a hairpin loop. A basic stem consists of a tail located at 

 and a head located at . For the pointer index at , a forward 

pointer (green arrow) points to  and a reverse pointer (brown arrow) 

points in the opposite direction at . (a) A basic stem and hairpin attached 

to the stem at . (b) The triangle diagram representing this hairpin loop 

with the pointer index  and the forward (green arrow) and reverse (brown 

arrow) pointers. 
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S2.2.1. Secondary structure pointers 
In this approach, the pointer maps the next major position of the secondary structure and any 
previous position that is present in the structure. The pointer consists of the current position , a 

tag classifying the type of secondary structure located at , a forward link (labeled “forward” in 

Fig. S7a) and a reverse link (labeled “reverse” in Fig. S7a). The essential secondary structure tags 

consist of the following: ‘S’ (part of a stem), ‘I’ (internal loop or a bulge), ‘H’ (hairpin loop), and ‘M’ 

(multibranch loop). Stems are further divided into main stems (tag ‘S’) and short stem fragments 

(‘C’, usually 2 base pairs). The reason for this minor distinction is that these short fragments rarely 

),( ji
),( ji
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appear alone outside the context of a neighboring stem of longer length.    
For example, Fig. S7a shows a stem with a pointer located at a base pair . The tag at 

 is ‘S’, the forward pointer (green arrow labeled “forward”) aims at the head of the stem 

 and the reverse pointer (brown arrow labeled “reverse”) aims at the tail of the stem 

. When the pointer is located at  in the stem (same Figure), it points to the next 

secondary structure and back to the tail of itself at . In Figure S7, the next secondary 

structure is a hairpin (tag ‘H’) and the pointer points forward to itself at . Figure S7b 

shows a triangle diagram representation of the secondary structure and the respective coordinates for 

a stem terminated by a loop (known as a “stem-loop”).  
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Supplement Figure S8. Characteristics of a pointer located at an internal loop. 

Here, the pointer  is located at . The forward pointer (green 

arrow) points to  and a reverse pointer (brown arrow) points in the 

opposite direction at the tail of the current stem . (a) A basic internal loop 

attached to a stem at . (b) The triangle diagram representing this internal 

loop with the pointer index  and the forward (green arrow) and reverse 

pointers (brown arrow).  
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In Figure S8a,  is located at the head of stem , indicated also by the green oval. 

The secondary structure is an internal loop (tag ‘I’) and the forward pointer aims at the tail of the 

next stem located at ; this is also shown in Fig. S8b as a triangle diagram. Like the hairpin 

loop, the reverse pointer indicates the tail at . (The subscript index is used for notation 

purposes here. The pointers at each position  are sufficient to fully index all necessary 

information.) In Figure S9a, the pointer  is at a multibranch loop (tag ‘M’) at  

(green oval). Here, a single pointer is insufficient to indicate the branching of the stem and an array 

of pointers is applied at  to map out the branches at  and : 
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forward 1 and forward 2 respectively. The reverse pointer aims at  whose tag is ‘S’.  

The pointers are also shown in Fig. S9b with a labels “(f1)” and “(f2)” indicating the forward 

pointers (green arrows), and “(r)” indicating the reverse pointer (brown arrow).  
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Supplement Figure S9: Characteristics of a pointer located at an multibranch loop. 

Here, the pointer  is located at . The forward pointers (green 

arrows) points to  (forward 1) and  (forward 2) and a reverse 

pointer (brown arrow) points in the opposite direction at the tail of the current stem 

. (a) A basic multibranch loop attached to a stem at . (b) The 

triangle diagram representing this multibranch loop with the pointer index  

and forward “f1” and “f2” pointers (green arrows) and a reverse pointer “r” (brown 

arrow).  
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Finally, when the pointer is located at , it points forward to  and points in 

reverse to the nearest secondary structure that connects it, or to itself if there is no secondary 

structure connecting it. 

),( tt qp )hq

In short, the forward pointers map the structure at  to any connecting indices ),( ji ),( ji ′′  

that satisfy either jjii <′<′<  or 'i i j j '= < =

jiji

. Any information within the boundaries can be 

discerned from these mapping pointers. Likewise, when we want to discover information about other 

parts of the structure {  or )j,(, iji <′′ ′′< ,),(  or ( ,i i )j′ j′< < }, the reverse pointers help 

find this information about the rest of the domain and, when combined with the forward maps, can 

discern information about every part of the existing structure. 

This information is regularly updated with each construction of the map or section of the map. 

A summary of the secondary structure pointers is shown in Tab. S1. For RNA secondary 

structure, this information is sufficient to map a complete structure and assess the relationship of a 
given secondary structure at  to other secondary structure in other regions of the map. The ),( ji

 5 



modeling provides more immediate structure information than traditional methods. Currently, most 

of the secondary structural considerations in vsfold5 are limited to the local region in the vicinity of 
 where the main focus is on the persistence length and stem formation. However, with 

pseudoknots (next section), global search methods were required because the configuration 

information about other parts of the structure aid in deciding the stability of any potential structure. 

Modules are easily added to expand this functionality further. 

),( ji

 

Legal tag(s) forward 
pointer 

reverse 
pointer Multiloop branches 

(ss_name) (ss_link) (ff_link) (ss_iMBL) 

Figure 
examples 

‘S’ (or ‘C’) ),( hh qp  ),( tt qp   S7 

‘H’ ),( hh qp  ),( tt qp   S7 

‘I’ 1),( tt qp  0),( tt qp   S8 

‘M’ 00),( hh qp  00),( tt qp  11),( tt qp , … 12),( tt qp S9 
 

Supplement Table S1. List of pointers used in the secondary structure maps: 

(ss_name) a tag indicating the secondary structure, (ss_link) the forward link, 

(ff_link) the reverse link and, (ss_iMBL) the array of pointers linking the 

pointer to the branches of the MBL. (Example Figures): The corresponding 

Figures used for these examples.  The tags represent the following secondary 

structure: ‘H’ hairpin loop, ‘I’ internal loop, ‘M’ multibranch loop (MBL), ‘S’ stem 

and ‘C’ connect stem. 

 

S2.2.2. Pseudoknot handles 
The pseudoknot (PK) adds considerable complexity to the simple pointer type mapping used in 

secondary structure calculations. To address this, handles are used to map out the pseudoknot 

superstructure, while the intervening secondary structure is handled in the same way as before. With 

the exception of true knots, if some folding pathway can be described by decomposing the structure 

into a set of sub-structural modules, all typical types of pseudoknot structures can be described by 

this approach.  

First we distinguish between two types of pseudoknots: core PKs and extended PKs. 

 

S2.2.2.1. Core pseudoknots (cPK): 
A core PK consists of a domain (or a group of domains) of secondary structure that are joined 

by a linkage strand. Its primitive structure resembles an H-type PK [7] or in other terminology, an 

ABAB PK [24]. This is expressed by the outlined structure (Fig. S10a, the outline colored blue, 

orange and red and extending from the labels  and ). The gray structures indicate additional Ri Rj
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secondary structure that could embellish this core PK and are mapped onto the core PK structure by 

the handles. A triangle diagram of the same structure is shown in Fig. S10b. 
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Supplement Figure S10: Example of a core pseudoknot: (a) the pseudoknot 

structure and labels, (b) the corresponding structure on the triangle diagram. The 

gray stems extending from the main structure indicate some of the multitude of 

possible embellishments that could be added to the basic structure. 

 

The core PK handle contains an input index ( ) and output index ( ) forming a complete 

independent module. To , other secondary structure (ss) pointers or PK handles can be 

mapped onto this handle. This permits PKs that are embedded (or nested) into other ss and PKs. 
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The handles express the main coordinate for the root stem  (Fig. S10a, region with 

blue background), the junction region  (region with yellow background) and the linkage 

stem  (region with red background). To this, a neck region that contains a stem with tail at 
 and head at  is chosen on the root domain closest to the linkage stem to map 

out additional secondary structure and the local structure surrounding the point of attachment of the 

linkage stem. When  is equal to , then only a single simple stem is present at 
the root stem’s domain. The junction region  builds similar maps as  around 

the junction region. The linkage stem consists of a map of linkages permitting the linkage to account 
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for small bulges and internal loops in the linkage caused by non-WC pairing and mismatches.  

The root domain can consist of a complex domain of secondary structure, a simple stem, or 

another pseudoknot. The junction region and the neck of the root stem can also associate complex ss, 

PKs, or a simple loop. Hence, considerable complexity can be systematically mapped onto the PK. 

In short, the handles map out global configuration in a similar way as the pointers map out local 

secondary structure, but they handle considerably more complex and detailed information than do 

the simpler ss pointers. Table S2 shows a description of the handles used for cPKs, where the 

handles used by cPKs are indicated in the upper section of the Table.  
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Supplement Figure S11: Example of an extended pseudoknot: (a) the pseudoknot 

structure and labels, (b) the corresponding structure on the triangle diagram. As in 

Fig. S10, the gray regions represent examples of the multitude of possible 

embellishing structures. 

 

S2.2.2.2. Extended pseudoknots (ePK): 
Some types of PKs cannot be mapped using the cPK architecture. These types of structures have the 

characteristic that they join two independently stable domains of structure (often secondary 

structure) together by a small linkage stem (Fig. S11a). These are called extended pseudoknots (ePK) 

because they extend over at least two independently stable domains of complex RNA structure. The 
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essential structure of an ePK is shown in Fig. S11a along with the corresponding half triangle 

diagram (Fig. S11b). The primitive form of an extended PK resembles the ABACBC type structures 

[24]. The pointers used for an ePK are summarized in Tab. S2. 

 

Descriptor 

handle 

Legal pointers 

(pk_link) 

Legal tags 

(pk_name) 

Free energy label 

(fPK) 

ijR ( , )R Ri j  ‘R’ or ‘K’ dGR 

pqL ( , )L Lp q  ‘L’ dGL 

Pql ( , )l lp q  ‘H’(=‘J’), ‘I’, ‘M’ dGwt 

pqJ ( , )J Jp q  ‘H’(=‘J’), ‘I’, ‘M’ dGJ 

pqH ( , )H Hp q  ‘H’(=‘J’), ‘I’ dGH (redundant) 

Jbranch MBL branches ‘S’, ‘K’, ‘R’ (branches) Individual branches 

ijd1 1 1( , )d di j  ‘S’, ‘K’, or ‘R’ dGd1 

ijS1 1 1( , )S Si j  ‘S’, ‘K’, or ‘R’ dGS1 

ijp1 1 1( , )p pi j  ‘H’, ‘I’, ‘M’ dGp1 

ijc1 1 1( , )c ci j  ‘H’, ‘I’ dGc1 (redundant) 

p1branch MBL branches ‘S’, ‘K’, ‘R’ (branches) Individual branches 

(handles only needed for extended pseudoknots) 

ijd2 2 2( , )d di j  ‘S’, ‘K’, or ‘R’ dGd2 

ijS2 2 2( , )S Si j  ‘S’, ‘K’, or ‘R’ dGS2 

ijp2 2 2( , )p pi j  ‘H’, ‘I’, ‘M’ dGp2 

ijc2 2 2( , )c ci j  ‘H’, ‘I’ dGc2 (redundant) 

p2branch MBL branches ‘S’, ‘K’, ‘R’ (branches) Individual branches 

 

Supplement Table S2.  List of the structure of the handles used in pseudoknot 

mapping: handle names, pointer contents (pk_link), tag contents (pk_name) 

and free energy values (fPK). The tags ‘S’, ‘H’, ‘I’ and ‘M’ were defined in Table 

S1. The tag ‘K’ indicates a core pseudoknot, ‘R’ an extended pseudoknot, and ‘J’ a 

junction (effectively identical to a hairpin loop ‘H’). Core PKs ignore terms in the 

last part of the Table. MBLs are specified by the handles Jbranch (for junction), 

p1branch (root domain 1 at ijp1) and p2branch (root domain 2 at ijp2). 

The Free energy for the junction (dGJ) is evaluated at the closing point of the loop 

( , )l lp q  and the correction to the free energy due to the presence of a pseudoknot 

is stored in dGwt (i.e., pql) as a weight. The set is certainly complete and even to 

some extent redundant in some cases. 
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Similar to the cPK, the ePK has an input ( ) and output ( ). However, instead of one root 

domain, there are two: domain 1  (blue background region) and 2  (purple 

background region). The linkage stem joins these two independent domains at the respective neck 
regions:  (neck region 1) and (neck region 2). Special pointers in the handles 

map any structure in the loop (ss or PK). Similarly, the junction region also contains special handles 

to map out any complex structure contained in . Like the root domain of the cPK, the root 

domains of the ePK can consist of complex ss or even PKs. Hence, very complex structure can be 

mapped if some hierarchical folding pattern for a sequential 5’ to 3’ folding can be discerned.  

Ri

)2pj

( Jp

Rj
),( 11 dd ji

,( 2pi

),( 22 dd ji

),( 11 pp ji

)Jq,

More will be discussed in Section S2.3.2 on the diversity of PK structures that can be obtained. 

We only comment here that unlike other formal description schemes [23], the core and extended PK 

notation depends strongly on the way in which the RNA folds and the stability of the domains of 

RNA structure. The tag structure and mapping procedures depend on the order of the folding in this 

model. Therefore, these tags are not necessarily unique. However, they help describe the most likely 

pathway to the native state; something that is not offered by typical mapping methods. RNA is 

currently thought to fold according to the hierarchical folding hypothesis [25].  

 

S2.2.3. Linkage stems 
By employing a folding strategy to this problem, the linkage stem indicates something of the most 

likely order in which the PK structure formed. For typical ABAB PKs (simple cPKs), which stem is 

defined as the linkage stem is not particularly unique or significant. However, true linkage stems 

should be restricted to stems that are less than a full rotation (360o) of a contiguous A-RNA double 

helix (about 10 base pairs [26]) because all PK models exclude true knots. Proteins that have true 

knots have been observed [27]. Knots are quite possible and indeed should be common — as anyone 

who has ever untangled a “carefully wound” electrical cord can realize. Therefore, the length of a 

linkage stem on cPKs should be less than 10 contiguous bps; nevertheless, stems of this length 

appear to be extremely rare. There should be no other distinction than the most probable order of 

folding that is read into this information.  

The linkage stem of an ePK reflects the initial domain structure that appeared before the linkage 

stem of the PK joined the independent RNA domains. Therefore, in ePKs, there is more significance 

behind what forms the basis of the linkage stem. Nevertheless, these definitions are often more 

qualitative and, thermodynamically, there is nothing unique about them.  

 

 

S2.2.4. Look up tables of exit tags 
There is one final issue with mapping. What happens if we build a PK and later add on another PK 

and have to edit the original PK slightly? This is a plausible situation. One way is to update the 
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internal object. However, given that the level of editing is not extreme, it is better to keep the 

original object unchanged because that represents the best structure over the region of the original 

PK.  At present, the extent of editing appears to satisfy this condition. Hence, we have not 

constructed rules to handle drastic editing of the originally derived structure if it is embedded in a 

pseudoknot. Note that if the domain being edited is not a pseudoknot, then quite drastic editing is 

certainly allowed in vsfold5 even if pseudoknots are present within that same domain. 

Therefore, instead of editing the original object, vsfold5 uses a lookup table of exit tags to 

decide if a region of structure should be evaluated.  Any reconfiguring that would occur in a 

biological context would involve melting of material and reconfiguring the surroundings that were 

originally present in the original PK structure.  This means we need to fix the original structure at 

the new neck region. This we can do by checking a short list of exit tags that indicate where some 

editing has occurred, these tell the methods to jump to the next task built up at the higher level. 
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S2.3. Time, memory and structural complexity 
Here we describe the computational demands (time complexity) and memory requirements of 

vsfold5.  In addition, we describe the structural complexity that is accessible to vsfold5.  

 

S2.3.1. Time and memory complexity of vsfold5 
Before discussing the time complexity, we must emphasize that there are numerous known 

inefficiencies built into the secondary structure methods of the current program because the focus 

has been on the science; not the algorithm. We expect more efficient code is likely to speed up the 

calculations significantly and reveal the true cost of the pseudoknot calculations. A benchmark test 

of the current program is shown in Table S3. 

 
S2.3.1.1. Stems:  
A major part of the time complexity in vsfold4 and 5 is devoted to finding a good combination of 

stems in the stem building methods. A full search should add a cost of  [28]. 4(O N )

)

)
)

The stem search further includes recursive methods that scan different pathways to find the best 

effective stem length with the minimum free energy.  Recursive scanning can extend up to 6 levels 

(default) and more can be requested, but six levels are generally sufficient for most problems. The 

search is done recursively until either a cutoff is reached or the stem clearly terminates. Because 

such recursive optimizations are done every time (even though past successful solutions are already 

known), it is currently a major design inefficiency. An ameliorating factor is that this search is 

limited to a finite number of recursive hops. Theoretically, reusing these solutions reduces the time 

complexity to as small as  [28]. However, because this program remains under extensive 

constant development, these optimizations are currently not used. Without any optimization, the time 

complexity appears to be  for this calculation. 

3(O N

4.7(O N
The memory requirements are essentially , where 2(O pN p  is the number of pointers (7: 

forward, reverse, free energy and tag Table S1).   

 

S2.3.1.2. MBLs:  
As with the case of the stem building modules, the MBL modules certainly add a time complexity of 

 [29]. The more complete analysis of the MBL’s environment also adds considerable 

overhead.   

3(O N )

Memory requirements also are increased with this approach due to the MBL branch pointers in 

general, and also the contents of the pseudoknot handles. However, the pointer size is of , 

and the maximum number of branches is an inverse function of the Kuhn length (a longer Kuhn 

length requires less allocation of memory for a sequence of length N because more structure is put 

2( )O N
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into building long stems and less is devoted to loops and branching). Therefore, the memory 

requirements are , where 2( ) (O pN O mN+ 2 ) p  is the number of pointers (same as a stem) and 

 is the maximum number of branches (a number that is inversely dependent on the Kuhn length). 

The default value is 15 branches and therefore 

m

30 m N≤ �  (for large N). Future development of 

an object that permits internal allocation of memory is expected to reduce this global demand for 

branch memory significantly. 

 

S2.3.1.3. PKs:  
Given that optimizations are done on the stem search methods that reduce the time complexity to the 

theoretical minimum of , the addition of PK capability will result in a time complexity 

ranging between  and . This is comparable to some other recent methods [19]. A 

simple search for H-type PKs would normally be expected to cost  in time complexity.  

With this approach, the full structural complexity that normally requires  is not sacrificed; 

however, there are limitations introduced due to the choice of the folding pathway.  

3( )O N
3.5( )O N 4(O N )

)
)

4(O N
(O N 6

In the modeling, we assume that if a biologically active functional RNA requires a PK in the 

structure, the existing folded structure should leave “hints” that encourages the formation of the 

linkage stem. Though it is possible this assumption is sometimes inaccurate for particular examples, 

such counter examples appear to be few based on the current survey. Therefore, all free strand 

regions are checked in the search; however, only strands that already have at least 5 nts free are 

tested for potential PKs.  

There are several reasons why this approach can permit full complexity without adding more 

than an order 1 increase in time complexity.   

Mapping is able to reduce this to a fractional exponential increase.  To show that mapping will 

reduce the time, we show the following thought experiment. In Fig. S12(1-8), stem loop structures 

are shown in increasingly complex patterns. The dominant surface where PK binding can happen is 

usually in the hairpins. (Vsfold5 does look everywhere for free strands, nevertheless, for the reason 

stated above it is often pointless.) Let s  represent the average stem length and  represent the 

average loop length. Then with the given proviso, Figs. S12(1-8) should have the following total 

lengths: , , 

l

1 2N ≅ s l+ 2 4N s l≅ + 3 6 2N s l 4N s≅ + , 8 3l≅ + , 5 10 3N s l≅ +

n N

, , 

, and  respectively, where the subscript  in  indicates the 

number of stems in the structure. Of course, there are worst possible cases that could increase the 

content of , but we think these examples are quite reasonable. This very roughly corresponds to 

6 12 4N s≅ + l

7 14N ≅ 4s l+

l

8 16 4N s l≅ + n

~N sn l+n n . Then for large , . If we now consider the ratio of the loop surface 

relative to total length that the mapping methods search, we find that 

N ~n N / s
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n /l l N s
N N N

= ∝
1 . (S0) 

 

Thus, the time complexity of the free strand search grows as 3(O N N× )  rather than . 

Furthermore, the mapping manages all forms of PKs with this growth because it scans for the 

linkage stem and then can quickly determine what type of structures are being linked. Hence, the 

solutions are not limited to H-type pseudoknots either. 

3( )O N N×

In addition, the approach simply scans the free strand region on established domains or melts a 

hot lead onto them and re-computes the structure. These calculations are only carried out 

periodically; currently, the default is at the end of every third cycle of the secondary structure 

computation and internally within a MBL. Although linear, when combined with the above 

reductions, the time complexity is further reduced. Therefore, the PK-search option can result in as 

small an increase as .  3.5( )O N
There are significant memory demands for PK handles (Tab. S3); however, this is not a large 

because only a few handles are actually made in any computation. 

 

1

2

3

4

5

6 7

8

 

Supplement Figure S12. Examples of some possible hypothetical RNA structures 

with average stem lengths (s: brown) and loop free strand lengths (l: cyan): (1) 

single stem, (2) two stems plus a loop, (3) three stems, (4) four stems, (5) five 

stems, (6) six stems, (7) seven stems, and (8) eight stems. The magenta regions 

represent minor loops and free strand regions.  
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Sequence length [nt] 
Vsfold4: observed 

calculation time [s] 
Vsfold5: observed 

calculation time [s] 
201 1.5 2.5 
363 18 30 
435 50 89 
570 238 341 

Exponent: 4.7 4.7 
Time constant: 1.3×10-11 [s] 3.7×10-11 [s] 

 
Supplement Table S3. A comparison of the computational time required for 

secondary structure (vsfold4) and pseudoknots (vsfold5). Here,  is the 

sequence length. (Calculated using Intel Xeon 3.0 GHz single processor, Red Hat 

Linux 9.2, gcc 3.3.)  

N
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S2.3.2. Structural complexity of pseudoknots of vsfold5 
To this point, only the general mapping methods have been described. Here we consider some 

examples of how these simple motifs can be used to build some of the complex structures important 

to state of the art approaches. 

 

d2d1 d3 dn-1 dn

d2d1 d3 dn-1 dn

d2d2d1 d3d3 dndn-1 dndn
R1

R2

Rn-2

Rn-1

c

b

a

 

Supplement Figure S13. An example of a recursive extended pseudoknot. (a) the 

Rivas and Eddy style Feynman diagram [18] of a recursive structure of extended 

pseudoknots. (b) The corresponding secondary structure with pseudoknots. (c) The 

object representation of this pattern in which the assignment of an ePK takes the 

form of a Russian doll.  

 

S2.3.2.1. Recursive pseudoknots 
With the two basic structures (cPKs and ePKs), recursive PKs can be built [30]. In Figure S13, we 

show an example of a recursive ePK that works successively along a single pattern.  In Figure S13a, 

the Rivas and Eddy Feynman diagram [18] of a recursive ePK and below this in Fig. S13b, the 
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corresponding structure is shown in succession. Below this, in Fig. S13c, a simple example of the 

folding construction is shown in which each domain (d1, d2, etc.) is made and a linkage made to the 

previous member in a regular progressive pattern.  
In Figure S13c, the dot indicates an individual domain (also labeled above as  in Fig. S13b). 

These are surrounded by a box that is labeled R
nd

Rk that indicates the successive assignment tags for the 

ePK domains. The box enclosing the dots indicates the objects inside. Therefore, the label R1R  

contains d1 and d2, the label RR2 contains the objects R1R  and d3, etc. The object structure resembles a 

Russian doll in form where each time one opens the box, a smaller doll appears.  
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Supplement Figure S14. Examples of some ways to map complex pseudoknots as 

a series of cPK motifs derived from a suggested folding pathway. (a) An example 

of a recursive cPK with the pattern ABCBDADC . (b) An example of a group of 

embedded cPKs with the pattern ABCDCDAB . The arrow suggests a dominant 

folding pathway that the structures could form in a sequential folding (5’ to 3’) 

progression.  

 

The arrangement of the boxes need not be in such a trivial order as shown in this example. 

However, once a PK is decided from some folding pathway, this wrapping shields the internal 

contents inside (though this aspect could be modified too). Any recursive pattern of construction of 

this kind requires unwrapping the box before the contents inside can be explored. Hence, it is not 
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essential that it follows exactly the plan of this example, but, currently, some patterns could be 

missed if the priority of construction is disordered relative to the sequential folding direction. 

This process is done procedurally with recursive construction methods, but resembles that of 

wrapping the objects inside.  

Although Fig. S13 is an example done with ePKs, it is also possible for such a pattern to form 

with cPKs. This again is reflecting something of a view of how RNA structure is formed. The pattern 

generated would be identical, but the process by which it came about is not. With the ePK, a pair of 

blue stems would form first and these would then fuse together. With a cPK, linkage would be added 

successively to the structure. Generally, in this model, a stand-alone linkage stem requires 

independent stability of whatever internal structure is inside. On the other hand, an extended PK 

depends on the stability of its independent domains (for example, d1 and d2) and their mutual 

coupling together to form a small linkage stem. Far more complex mixtures of structure are likely to 

be built up with an ePK. 

As a second set of examples, we consider how a pseudoknot with the pattern ABCBDADC  

(Fig. S14a) and the pattern ABCDCDAB  (Fig. S14b) would form [24], where, for readability, we 
have added a bar over certain letters to indicate the complimentary strand of the corresponding letter: 

e.g.,  and A A . The folding pathway is shown in Fig. S14. Figure S14a shows a recursive PK 
formed by adding more stem onto an existing PK. Figure S14b shows a cPK embedded inside 

another cPK. Hence, many types of complex PKs can be found with this strategy. 

 

S2.3.2.2. Limits on structural complexity: 
With some limitations specified here, vsfold5 can map any structure that can be expressed by 

some reasonable sequential (5’ to 3’) folding scenario using these simple cPK and ePK motifs. The 

concepts behind vsfold5 permit a capacity to find all different types of pseudoknots with minor 

restrictions that we lay out here. 

 

1. Pseudoknot stems should be significant in size. Vsfold5 rejects isolated 1, 2 and 3 base pair (bp) 

linkage stems because there is simply insufficient information to assess such tiny interactions 

with the raw estimates available from the thermodynamics. That the current estimates work at all 

is a credit to the power of thermodynamics to forgive gross ignorance and hardly an indication 

that the values used are precise. 

2. A variable Kuhn length is not currently available on vsfold5 yet. Therefore, a PK of variable 

flexibility is not necessarily accessible due to the level of maturity of the current approach. 

3. For any complex pathway architecture of PKs, there must be at least one pathway that satisfies 

the folding conditions: 5' 3'→  folding, denature/refolding conditions, or 3' 5'→  folding.  

Currently, vsfold5 only processes 5' 3'→  folding, but, in principle and with some further 
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development, its modularity would admit denature/refolding or 3' 5'→  folding. Currently, for 

structural RNA, this does not appear to be problematical. Nevertheless, some structures could be 

excluded for this reason. 

4. Pseudoknots currently do not check themselves in vsfold5. Therefore, whereas a recursive chain 

of extended PKs could form (Fig. S13), connecting the ends, as in Fig. S15d, is currently not 

done. Nevertheless, this example can be done, if one really wishes and in this respect, vsfold5 

can do better than even the best available approach currently.   

5. Finally, the PK structure does require that hierarchical folding occurs with RNA. Since the base 

pairing free energies (FE) are of similar order of magnitude for AU, GC, and GU pairing, this is 

probably true. However, we cannot say for certain at this point that a pathologically variable free 

energy surface of extreme difference in FE is universally solvable by any method other than an 

exhaustive search, particularly if the configurations are also arbitrarily unrestricted. Nevertheless, 

if such a surface can be found, all the current strategies would suffer the same defeat. 

 

With this general proviso, all the structures indicated in the historic developments in this field are 

doable in this approach; given some consistent folding pathway is describable.   

The program can solve structures such as those shown in Fig. S15. Structures (c) and (d) were 

considered in Ref. [30] and structure (e) is discussed in Ref. [24]. Labels on the Rivas and Eddy 

Feynman diagrams [18] in Fig. S15 indicate the stem sequence and its compliment (e.g., A and A ). 
The structures in Figs. S15a-c can all be evaluated with vsfold5 in its current form.   

Exceptions, as pointed out in item 4, are such structures as Fig. S15d (first pointed out in Ref. 

[30]) and S15e (pointed out in Ref. [24]).  

For Figure S15d [30], only the loop around (d1 and dn) is not possible in the current vsfold5 

architecture. Presently, vsfold5 does not look inside of its own pseudoknots for more pseudoknots. It 

is assumed that pseudoknots build up modularly inside of one another, if they build up at all in this 

way, and we need not concern ourselves with modules deep inside the superstructure until we need 

to unwrap them. Moreover, the types of structures likely to satisfy even this are small because of 

steric hindrance of jamming two stems in a loop and folding such a structure. This would only be 

more problematical for joining d1 and dn (Fig. S13) together. Perhaps with sufficient length, a circle 

could be made that would satisfy all the physical requirements. To handle this prediction problem, 

we would need to add exit tags for domains in the lookup table and apply them in the same way as 

the neck-exit-tags. Currently, aside from the aspect of theoretical curiosity, such matters, though in 

principle doable, have not been opened in the current architecture of the program. 
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Supplement Figure S15. Rivas and Eddy type Feynman diagrams of RNA structure and 

the corresponding structure represented in secondary structure style. (a) A core 

pseudoknot. (b) An extended pseudoknot. (c) a consecutive set of core pseudoknots 

embedded in a piece of secondary structure. (d) A recursive pseudoknot that folds back 

on itself. (e) A complex interplay of an extended PK and a core PK.  Vsfold5 cannot 

currently examine its own pseudoknots. Therefore, in example (d), the loop around 

cannot be computed, and, in example (e), either stem B or stem C can be obtained, but 

not both.  
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For Figure S15e, for the pattern ABCADBECDE  [24], currently vsfold5 can chose either B 
or C, but not both from the general pathway of folding domain 1 and 2 first. Estimating from the 

general tendency of the free energy rules, stem C is probably more likely. In short, we don’t 

currently ask PKs to examine themselves. Nevertheless, there is an alternative pathway shown in Fig. 

S16 that can succeed with this structure. Hence, the order is a crucial factor in this model. Even this 

can be remedied with little additional cost in time complexity, were this deemed critical in prediction 

problems.  
Hence, there is in fact no sacrifice in computational possibility at all and, indeed, vsfold5 may 

have even more capability than any existing approach. However, there are some additional 

restrictions on what is admissible due to the current state of extreme uncertainties and perhaps some 

(largely correctable) idiosyncratic assumptions made in the design and current development of the 

program.  
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Supplement Figure S16. An alternative pathway that leads to the exact structure listed 

in Fig. S15e.  
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S2.4. Free energy evaluation of pseudoknot structures 
Here we explain the general concepts behind the evaluation methods of pseudoknots. Most of the 

secondary structure methods are done as before and can be found in the literature [1].  

The free energy is path independent in the CLE model. Therefore, the choice of linkage stem 

has only the indication of the most likely pathway for the structure to fold and carries no other 

significant information beyond this.  

There are a multitude of structural issues associated with pseudoknots that can often be ignored 

when the problem only involves secondary structure. The reason appears to be due largely to the fact 

that the space between different secondary structures is sufficiently large that sub-domains are not as 

likely to interfere with each other. Not so for the pseudoknot. Though RNA bases all exhibit a 

similar size and chemical identity, packing issues are important particularly due to electrostatic 

effects. Hence, PKs begin to show some of the same difficulties encountered in protein structure 

problems where both packing and residue characteristics in some context can make or break the 

structure prediction [31] once the PK problem is introduced. 

Currently, the methods presented here are largely based on qualitative estimates and are subject 

to considerable revision in the future. 

 

S2.4.1. Helical twist of RNA 
In all cases tried so far, the linkage stems tend to have less than 10 contiguous bps in a single 

stem; a situation where a knot would form [26,32]. It is often the case that the important linkage 

stems only contain 4 to 6 bps (close to the 180o twist) and, often, when they do exceed 5 bps, they 

have an internal loop that breaks the continuity at 5 bps. This renders the issue about the twist largely 

moot. Generally, RNA appears to use internal loops (I-loops) to help compensate for the twist, 

basically defeating most attempts to use these relations in some general way. A cutoff of 9 

contiguous bps on the linkage stem is easily added.  

 

S2.4.2. Local contact strain in very short loops: 
If the loop accepting a linkage is far too small, then there is very little flexibility in the loop to 

accommodate sufficient twist between the loop and the linkage stem. We refer to this here as local 

contact strain.  

This is expressed graphically in Fig. S17a and in 3D in Fig. S17b. Several problems emerge, 

particularly when considering Fig. S17b. First the free strand (orange) connecting the linkage stem 

(red) is rather short to accommodate the large rigid structure that is being forced on the space. Worse 

is that the root stem (blue) is filled up with the linkage stem. Neither can the root domain make up 

the difference because it is already bending under the strain of a tight loop. Second, the loop regions 
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on both halves are short, so there is no flexible free play between the forming strands. Over 5 bps, 

the twist in the stem is roughly 180o, and when this must be coupled with such a short loop, there is 

no room to accommodate either part well. Finally, nucleic acids have negatively charged phosphates 

that must be compensated by divalent cations in tight configurations, yet there is hardly any surface 

area where such divalent cations can rest long enough to have much impact on the stability.  
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Supplement Figure S17. An example of the concept of “local contact strain”: 

shown diagrammatically in (a) and 3 dimensionally in (b) with the structure on the 

left representing the condition prior to adding a PK, and on the right, representing 

the condition after adding a PK.  The orange strand indicates the junction region, 

red the linkage and blue the root domain (purple indicates the region being joined). 

Over the range of 5 bps, the double strand helix of A-RNA rotates approximately 

180o. This renders the distortions and lack of free play even more severe in (b) 

than would be suggested by the diagrammatic example in (a).  

 

When too much of the stem is occupied by the linkage, the part occupied by the stem restricts 

the free motion of the loop, changing the flexibility and distorting the structure of the loop. 

Therefore, the costs of formation should increase when too much of the loop is occupied by the 

linkage stem. This contact strain tends to select root domains with a larger free strand contact region 

for PK formation compared to tight loops. When the free strand within the root domain is less than 2 

nt, the structure is strongly discouraged unless melting some of the existing stem can achieve a 

visible improvement. The persistence length, or more precisely when referring to a Gaussian 
polymer chain, the “Kuhn length” (ξ ), is also important to consider here because the stiff structure 

should only increase resistance to tight structures such as this. 
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Given a stem of length Jl  (measured in the number of bases) and a loop of length , the 

available free strand is 

ln

f l Js n= − l . Currently, there is a minimum strand length for this gap ( min
Fs ) 

such that  

 

min
B F

min
F

3.2 , 

0,          
l J

gap
l J

k T s n l
dG

s n l

⎧ ≥ −⎪= ⎨
< −⎪⎩

 (S1) 

 

where min
Fs  is also scaled as a function of the Kuhn length (ξ ) such that min

F / 2s ξ= . (The Kuhn 

length is a measure of the stiffness; hence, the Kuhn length will tend to stiffen the strands.) There are 

known loops that have only 1 nt free, and to this, the above cost will be added. Experimentally, at 

least some of the PKs that have such a short strand also require Mg2+ to form. Therefore, this does 

not seem an unreasonable cost to add to very short loops.  

Very short PK structures ( nt), as found with some frame shift related pseudoknots 

[33,34], require special attention to address. In line with the observations of Huang et al. [4], at least 

some discrimination can be worked out from the specific features of the PK. We do not analyze to 

the same detail as Huang et al. However, stem lengths are evaluated similarly with at least one stem 

requiring equal free strand length or the above cost is applied. Sequence composition and coaxial 

stacking may also be a factor in the stability of these structures but is currently not considered.  

25R Rj i− ≤

For cPKs, formation costs come from both the contact strain (local in character) and standard 

stem stability issues that govern all secondary structure stem formation rules. There is no natural 

distinction between linkage stems and the root domain, so all the basic rules of secondary structure 

must be applied in the same way to all stems.  

For ePKs, coaxial stacking and parallel stem interactions can help stabilize the linkage stem, 

hence, standard stem stability issues are relaxed slightly for ePKs. A minimum size for an ePK is 

also applied because two independent domains need sufficient contact region to warrant formation of 

a linkage between them. When the loop is short, considerable distortion is needed to accommodate 

the linkage stem. Again, a heavy cost for building a stem on small a loop region is added when 

min
F l ps n l≥ −  occurs in Eqn (S1). Moreover, when 25R Rj i− ≤ nt, the two independent domains 

are so small that formation of such a structure is essentially impossible to satisfy even were the Kuhn 

length equal to 3 nt (a ridiculously short length for most structured RNA).   
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S2.4.3. Pleating as a factor in reducing strain on a pseudoknot: 
An important feature is pleating and reorientation of the superstructure. For example, the group I 

intron of Tetrahymena thermophila has a stem that is folded over at the J5/4 junction position of the 

structure [35,36]. Hence, this effect should be considered when an internal loop is sufficiently large; 

at least for more than 3 nt × 3 nt (3×3).   

When pleating occurs, the stem can no longer resemble anything close to a straight stick-like 

object, but is folded back on itself. If, for example, we have a single pleat (as in the Tetrahymena 

thermophila example at the junction J5/4), then the effective length becomes the length of the P4 
stem minus the length of the P5 and P5abc stems or . In principle, this permits 

calculating an effective length (
P4 P5+P5abcpl l l= −

pl ) for any number of pleats  

 

1

1
( 1)

n
k

p
k

l −

=

= −∑ kl  (S2) 

 

where  is the index of a stem corresponding to  (when there is only one stem  and 

 means there are  pleats).  

k kl 1k =

1k > 1k −

Currently, there is no information available on the FE of pleating and consequently the parallel 

stem-alignment interactions between the P4 and P5 stems are unknown (though probably attractive). 

Therefore, the current algorithm does not ascribe any gain or loss from this effect; rather it simply 
evaluates a plausible effective length for the stem and adds a small entropic cost of  for each 

pleat, where we currently assume the cost is electrostatic effects in the junction.  We currently 

assess stems with internal loops greater than 3×3 as “plausible”.  Only the plausible effective length 

is considered and if even this cannot be satisfied, then surely the PK structure cannot form.  An 

example of pleating is shown diagrammatically in the main text (Fig. 4d). 

B1.5k T

 

S2.4.4. Mutually disproportionate lengths  
In addition to contact strain, both cPKs and ePKs must be able to combine in an energetically 

favorable way with each other. In developing the concepts here, we have adapted the concept of 

flexible loops and rigid rods first attempted successfully in Isambert et al. (Refs. [9] and [26]). The 

importance of considering the structure of the PK in a more 3D perspective is worth emphasizing, 

and in this respect, the elaborate architectures worked out in the approach of Ref. [9] are an 

important direction to take in considering PKs. The advantage of this approach is that the method of 

rejection is based on a slightly more objective approach of thermodynamics rather than a somewhat 

subjective approach of predefined elimination of certain structure types. 
 

 25 



(ip1,jp1)

(id1,jd1)

a

(ip2,jp2)

(id2,jd2)

b

(ip1,jp1)

(id1,jd1)

(pL,qL)

(pl,ql)

lJ lJ

lp l1 l2
sJ sJ

s1 s2sp

(pL,qL)

(pl,ql)

 

 

Supplement Figure S18. A schematic of the strands that comprise the basic 

pseudoknots. (a) A core pseudoknot. The brown indicates the region shared by the 
root stem loop and the linkage stem loop. Blue indicates pl  (the root stem), 

green&brown ps , orange Js  and red Jl  (the linkage). (b) An extended 

pseudoknot. The brown indicates the region shared by the root stem loops and the 

linkage stem loop. Blue indicates  (root stem 1), purple  (root stem 2), 

green&brown 
1l 2l

1s  (or 2s ), orange Js  and  red Jl  (the linkage). 

 
Disproportionate lengths for cPKs: 
We begin with a simple example and gradually develop the concept from this kernel.  

Figure S18a shows a schematic of a simple H-type cPK. Because the schematic is not shown in 
3D, it suggests that Js  must stretch out a length pl  to be able to form the linkage stem at Jl . In 

fact, there is a helical twist (Section S2.4.1) that can ameliorate this and there are differences 

between the minor grove and the major grove (Section S2.4.2 and Ref. [4]). Ideally, these factors 

should be considered. 

However, beyond these trivial examples, a general way to envision a 3D structure of arbitrary 

complexity becomes rather unwieldy without any experimental information to support it. Currently, 

because of this paucity of experimental information, vsfold5 handles the problem in the rather 

simple-minded way diagrammed out in Fig. S18a for all cPK structures. This ensures that there is no 

overt bias introduced by the foreknowledge of a precise structure for small cPKs and utter ignorance 

for large cPKs. 
As a result, the stretching of Js  by an amount pl  (Fig. S18a) is assumed in these calculations, 

where pl  is the effective length of the root domain (Section S2.4.3). Similarly, Js  is also 

evaluated in terms of its effective length such that secondary structure, which shortens the actual 

stem length in the junction region, is taken properly into account. We considered including 
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corrections for the twist [26,32] but found it was unnecessary at this level of maturity — though 

obviously important in principle to keep in mind. Though we sacrifice some accuracy, the structures 

are treated uniformly this way. When more experimental data is available, a far more precise module 

can be constructed. 
Using the general form of the CLE model, we estimate the initial length of the coil  in the 

free strand 
ir

Js  region (Fig. S18a) is (Ref. [1])  
 

2 2
i Jr s bξ∼  (S3) 

 
where Js  describes the number of nt in the junction sequence,   is the distance between the 

nucleotide residues in the chain (units of length) and 

b

ξ  is the Kuhn length (units nt). Because the 
stem is a rigid rod, it tends to be relatively straight, and therefore, the final length after folding ( fr ) 

transforms to  

 

0.50.5 ( )f pr b l ς+∼  (S4) 

 
where  is the effective length of the stem (possibly shorter than the apparent stem due to the 

pleating effect; Section S2.4.3), the factor of 0.5 estimates the relative contour length of the stem 
(about 3 Å in A-RNA [26]) and 

pl

ς  is a stretching parameter on the coil length: 0 1/ 2ς≤ ≤ . 
Let , then the entropic contribution from stretching pl l= Js  against  is  pl
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  (S5) 

 

where we have used the definition of the coil state to write ir r=  and γ  is the self avoiding 

weight (discussed in Ref. [1]).  For the simple Gaussian model, 1γ = . Currently, vsfold5 uses the 

standard weight used in traditional approaches ( 1.75γ = ) as the default.  To this expression, as with 

other renormalization examples [1], a weight of the linkage stem ( Jl ) divided by the Kuhn length is 

included: /Jl ξ  corresponding to Jl  contributions spread over a length scale ξ  nt. In more 

complex RNA structures, the length Js  is the effective free strand length. The entropy contribution 
to the FE in Eqn (S5) depends on the ratio . /lp Js

In most examples, Js l≤  and therefore, the second term of Eqn (S5), surrounded by square 

brackets, will contribute a large stretching effect. Hence, for cPKs, some strands would not be able 
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to connect if the entropic free energy contribution from stretching Js  is too large.  

The thermodynamics is blind to the definitions of linkage and root stems because the folding is 

path independent. To insure that there is no bias in evaluating the free energy, Eqn (S5) is computed 
by exchanging labels ( pl  with Jl  and Js  with ps ) in Fig. S18a and doing the analysis in the 

same way. The resulting free energy values are then added. This way, whichever way the structure 

folded, the final result is independent. It also reflects the property of equal and opposite reaction and 

response.  

We herein emphasize that this approach is quite preliminary and is likely to be revised 

substantially in the future when more precise 3D information can be worked directly into the code. 

The concept is similar to Ref. [26]. The difference is that the full equation for the entropy 

change is used rather than just the stretching part (the right hand side of Eqn (S5)) and this equation 

is applied both ways: exchanging root and linkage stems. In addition, the weight parameter does not 
assume a Gaussian model ( 1γ = ) and adjusts to match γ  to the value used in all other calculations 

(default 1.75γ = ). Currently, 2δ =  (see Ref. [1]) because there is no information about level of 

correlation between the stems in the structure. This latter point too can be easily remedied to handle 

a variable δ  and Flory parameters. 

 
Disproportionate lengths for ePKs: 

For the ePK, we can apply a similar approach (in Fig. S18b). However, unlike the cPK where 

Js  is the only element between pl  and the linkage stem Jl , the stem  lies between  and 2l 1l Jl .  

Therefore, we must consider the difference in the relative lengths of stems  and  (as well as 1l 2l

Js ) in accounting for the FE. The difference in the length of the parameter  in Eqn (S5) is closer 

to . Hence, we write 

l

1 2l l l= − 1 2l l l= −  and evaluate Eqn (S5) as before. 

Currently, the weight for ς  in Eqn (S4) is set to 0 for cPKs and 0.5 for ePKs. The reason for 

the difference is that the free strand on the cPK has more ways to accommodate the length 

differences by flexible rearrangements than the equivalent problem with the ePKs, particularly when 

large domains are involved. In both cases, strong deviations are strongly discouraged when the stems 

are drastically different in length and cannot be compensated reasonably using pleating.   

 

S2.4.5. Orientation (insufficient compensating free strand) strain: 
So far, we have only considered the case where the relationship between the effective stem length of 

the root domain and the adjoining linkage stem could be placed in direct relation to each other. 

However, the relative positioning of the linkage stem on the root domain (or domains) is also 

important.  
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Supplement Figure S19. An example of the concept of orientation strain for a core 

PK. Here, different angles θ  are expressed using a graphical representation, a 

simple angle diagram and finally a stick diagram of the estimated lengths. (a) For 

0θ =  rads, the angle and length scale is the smallest. (b) For / 2θ π=  rads, the 

angle and length scale is has increased by half of the linkage stem ( Jl ). (c) For 

/ 2θ π= , the angle is the largest and equal to the sum of the lengths Jl  and  

(the root stem).  

pl

 
Disproportionate lengths for cPKs: 
Figure S19 shows three angle relationships for the linkage stem of a core PK.  When the linkage 
stem is angled at π/2 rads on the loop, some additional length approaching 1/2 the linkage stem ( Jl ) 

is needed. When θ π=  rads, it suggests that the length is approaching the sum of both the root 
stem ( ) and the linkage stem: . This suggests the following minimal angle relationship pl p Jl l l= +

 

 29 



( )2 2 2 1 cos / 2p Jl l l θ= + −  (S6) 

 

where  is used in the same way as in Eqn (S5).  l
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Supplement Figure S20. A model for the phase angle for the ePK where  and 

 are equal but have opposite phase angles. (a, left) An example of the standard 

structure where 

1l

2l

1 0θ =  and 2θ π=  rads. (a, right) A simplified representation of 

this diagram. (b, left) The same example with the phase rotated by π  radians: 

1θ π=   and 2 0θ =  rads. (b, right) A simplified representation of this diagram. 

The colors correspond to those shown in Figs. S18 and S19: (cyan) domain 1, 

(purple) domain 2, (orange) junction region and (red) linkage stem.  

 
Disproportionate lengths for ePKs: 
Extended PKs require additional considerations because the structure involves two domains of 
effective stems. In Figure S20, the relation between the two stem-loops is such that their lengths (  

and ) are equal and their relative phase (
1l

2l α ) is zero. The first example (Fig. S20a) is the standard 

for that this structure is typically drawn in: 1 0θ =  and 2θ π=  rads. The second example (Fig. 

S20b) has the angles in the loops rotated by an angle π rad: 1θ π=  and 2 0θ =  rads. There is more 

symmetry and therefore more degeneracy in the structural orientations of the domains in an ePK.  

Figure S21 shows what happens when we move away from this very simple example. What 

appears to matter more is the difference in the orientation of the angles or the phase of the angle. 

Figure S20a is the same in terms of angles with Fig. S21a. However, the phase angle on Fig. S21b is 

certainly π/2 rad and Fig. S21c π rad. More free strand is needed to accommodate this increased 
length in the stem. The relationship for  and  suggests the following approximation 1l 2l
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( )2 2 2
1 2 1 2 1 2 1 22 cos ( , ) ,  l l l l l α θ θ α θ θ π= + − = + − . (S7) 

 
Thus, for (0, ) ( ,0)α π α π= ,  (Fig. S21a), and for 1 2l l l= − ( , )α π π , 1l l l2= +  (Fig. S21c). For 

( / 2, )α π π 2 2 2
1 2l l l= +,  (Fig. S21b).  
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Supplement Figure S21. Examples of orientation strain in various ePK 

configurations. Here, the orientation strain follows the same pattern as the cPKs 

but is more pronounced because of the added length of the second root domain. On 

the left hand side, a graphical representation of the different angles 1θ  and 2θ . n 

the middle is a stick representation of the distances. On the right hand side is the 

same cartoon with a stick and angle representation. (a) 

 I

1 0θ =  and 2θ π=  rads. 

(b) 1 / 2θ π=  and 2θ π=  rads. (c) 1θ π=  and 2θ π=  rads.  
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The calculation of this cost is carried out for both domains to account for the different 

orientations, thus there is no differentiation between different structural configurations and the 

results are always independent of the order of combination. The formation only depends on whether 

the thermodynamics find a favorable free energy for the given structure. 
These effects are partly ameliorated by using effective stem lengths for  and . In general, 

when the complex domains interact, their relationships are essential because the larger part of the 

structure is compact and cannot drastically change shape.   

1l 2l

When secondary structure or other pseudoknot units are added to these simple schematics 

shown in Fig. S18, the length of the free strand available for cutting slack in the length is reduced.   

Currently, the algorithm’s heuristics assume that there is no change in these subdomains after 

formation. Therefore, these structures are assumed frozen in form when the length of free strand is 

evaluated. However, even were we to open up some of the sub-domains located in the junction and 

root domain regions, the algorithm can evaluate the resulting structure according to a systematic rule 

that is completely reversible.   

In general, examination of the detailed processes going on within sequential folding and the 

search information we examined, there is little to be gained by ripping up already formed structure to 

hook on an emaciated linkage stem. It is more likely that evolution has already committed a lot of 

the effort needed to prepare a sequence for the best folding pathway. There is the possibility that 

intermediate protective structure may have been selected by evolution. However, even when we do 

see some indications of a stable intermediate stem in the location of a linkage point, there is still 

some surface where a “hot-lead” at the 3’ end can fuse onto the root domain structure. The gain 

between the “before” and the “after” should be significant. Finally, if a linkage stem is really 

supposed to extend a domain, evolution is likely to select for configurations that make that linkage 

stem interface easy to find. 

Hence, random sequences and folding in non-biological contexts where the vector direction of 

the sequential folding is ignored may result in very different predictions than the current algorithm’s 

heuristics handle, but evolution (with 3.5 billion years behind it) has surely selected sequences that 

avoid many of these major pitfalls. 

 

S2.4.6. Coaxial stacking, parallel stem alignments and steric repulsive effects: 
A final important category involves the arrangement of stems within the super structure: coaxial 

stacking, parallel stem alignments, and neighboring linkage stems (Figs. S22 and S23).  

 

S2.4.6.1. Coaxial stacking: 

An example of coaxial stacking is shown in Fig. S22a. Currently, vsfold5 cannot compute any gains 

from coaxial stacking, only a small reduction in entropy loss for some simple cases. Moreover, the 
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coaxial stacking is only computed when it is a proximal stem within the secondary structure or 

proximal to a linkage stem. Future plans are to add modules using the global mapping strategy to 

evaluate complex architectures of coaxial stacking.   

 

S2.4.6.2. Parallel alignment of stems: 

An example of parallel alignment of stems is shown in Fig. S22b. The RNA tends to have some level 

of mutual attraction. Hence, there should be considerable stabilization when stems can be arranged 

in parallel [37]. In addition to coaxial stacking, pseudoknots appear to require far more consideration 

of parallel stem alignment. Pleating is another example of simple parallel stem alignment where 

stabilization is likely to result from the mutual self attraction of the RNA. Currently, there is scant 

information on these type of interactions. As a result, these contributions are currently ignored. 

However, future plans are to develop modules to address stem arrangements. 
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Supplement Figure S22. Examples of coaxial stacking and parallel alignment 

between two stems. Coaxial means that both stems are along the same axis.  

Parallel alignment means that the stems are positioned in parallel.  

 

S2.4.6.3. tandem pseudoknot stems: 

The last group of interactions that are currently considered is the situation of tandem linkage stems 

(Fig. S23). In a pseudoknot calculation, it can often happen that some large domain has a linkage 

stem that can, in principle, associate with another domain where a linkage stem neighbors it. 

However, RNA has physical dimensions (Fig. S23c). Currently, we exclude these linkages if they 

result from independent domains if the existing linkage (Fig. S23c: PK1) and the new linkage (Fig. 

S23c: PK2) in the developing ePK border at a distance less than 4 nt away. There is the possibility 

that there could be coaxial stacking between such domains, but currently, there is no evidence, and 
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such matters require more data to make a definitive decision about how to model the effect properly. 

Other types of tandem linkages such as those shown in Figs. S23a and b are allowed.  

In the case of Fig. S23a, the linkages are actually located on independent domains and may 

even have some coaxial stacking occurring between them. Examples of this situation are found with 

the tobacco mosaic virus where there are three tandem PKs (see Fig. 1e of the main text). In such a 

case, there is no true distinction between a linkage stem and the root domain. Hence, it would not be 

correct to exclude such structures.   

In the case of Fig. S23b, the linkages are on the same root domain and are immediately tandem 

to one another. Again, there is no true physical distinction, as the linkage stems and the root stem can 

be easily exchanged. 

We expect that it is necessary to develop more sophisticated considerations, but currently, these 

general categories appear to be sufficient to discriminate between valid structures and invalid ones 

(at least for the structures so far tested). It would be desirable to develop some coaxial stacking 

models for special cases such as that shown in Fig. S23a. More experimental data is needed to 

understand these structures well before the model can be improved significantly. 
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Supplement Figure S23. Examples of different types of tandem linkage stems. (a) 

The linkage stems are right next to each other, but on independent domains. (b)   

The tandem linkages that are along the same axis and form a single pseudoknot, 

but are wrapped by the folding order. (c) The tandem linkages are formed by 

joining two independent domains and forming a extended PK. Examples (a) and 

(b) are allowed, (c) is not.  
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S2.4.7. General folding methodology 
In the search for PKs, the heuristics first looks for contacts that are significant in magnitude to 

warrant further testing. If a potential contact is found where 2 kcal/moldG < − , a stem melting 

module will try to melt part of the structure in the root domain to see if better contact can be 

achieved. Occasionally, this delivers a true edit. However, because the free energy of stems are of 

similar order of magnitude, most of the time, it appears that no gain is achieved. 

At the same time these local stem-melting methods are testing the minor rearrangements around 

the neck of the root domain and the linkage stem, the heuristics also continually build up a structure 

starting at the 5’ end and moving progressively toward the 3’ end searching for the best structure. 

While the main structure is building up, a “leading edge” of sequence ranging from 7 nt to 20 nt 

ahead of the currently built up structure (also called the dwell region) is tested on this existing 

structure for possible pseudoknots. This we refer to as a “hot lead” because the process resembles 

melting the leading edge strand onto the existing structure. When the folding catches up with this 

already tested structure, the free energy built by the secondary structure construction methods at the 

same region is then compared with the free energy generated by the pseudoknot test. If the 

pseudoknot turns out to be more stable than the structure generated by the secondary structure 

construction methods, then the PK is selected. This latter effect is generally far more drastic and 

appears to be the most effective. 

A 3D structure will also be affected by entanglement issues [8,9]. However, vsfold5 only 

considers the thermodynamically most-probably folding pathway in the calculation. Entangled 

structures represent alternative and less favorable structures. Hence, the entanglement issues are 

completely circumvented. Therefore, although a genuine issue, we need not monitor these or assign 

any cost function for them; nor should we, unless we intentionally wish to build them. Moreover, 

whatever cost could be derived would have to take into account base triples and probably other 

tertiary structure interactions. Since there is virtually no context dependent thermodynamic data for 

base triples, it is difficult to make more than a qualitative estimate of the stability of such structures 

at the present time. 

 

S2.4.8. Future directions in structure prediction using vsfold 
Thermodynamics and statistical mechanics are important in every physical process studied in science 

and engineering. Yet thermodynamics remains one of the poorest approaches to structure prediction 

of RNA and proteins; particularly when sequences become very long. Here, we explain some points 

where we observe that the predictions appear to improve within the current model. Whether these 

improvements are sufficient to overcome these broader issues remains to be seen.  

First, as structures grow larger, the 3D features of the structure and their interactions with other 

parts of the structure become very important. Stems can form coaxial stacking. Stems can also 
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condense into complex parallel interaction arrangements. These are common features of the RNase P 

(Ref. [38]) and the group I intron (Ref. [35]) that were tested in this work. The folding of these 

structures into modules of tightly packed, interacting structures requires context dependent 

experimental parameters that are currently rare or non-existent.   

The current 3D evaluation methods in vsfold5 are of the most trivial and simple-minded of 

models. These models appear to be sufficient for simple pseudoknots; however, they lack enough 

generality to handle the far more complex structural interactions that can develop in large compactly 

folded RNA sequences: particularly molecules like RNase P [38]. Certainly, we should expect that 

the mapping information of vsfold5 can be exploited to consider these compact 3D structural 

interactions; particularly if this is combined with experimental data that directly measures the 

thermodynamics of these interactions. Presently, even for the few 3D structural motifs that vsfold5 

detects in a calculation, these contributions are ignored because we don’t know what objective 

parameters to assign to them.  

Notably, the authors in Refs. [7] and [9] have also tried to look at 3D structural issues in their 

models; some of it quite detailed. Considerable experimental information is needed to significantly 

improve and test our model as well as these other models.  

Second, though it was computationally expedient to use a single Kuhn length for vsfold5, the 

flexibility of a real RNA structure (an inverse function of the Kuhn length) is likely to vary; 

particularly in most long functional RNA sequences. Furthermore, the flexibility can be context 

dependent and different stages of the life cycle of an active RNA can lead to changes in structure.  

For example, this is known to occur in the life cycle of HIV-1 [39]. Likewise, nascent RNA is surely 

different from well annealed RNA [40]. More experimental data is needed to understand the 

environmental conditions that influence the Kuhn length. No clear information is currently available.  

Predictions would certainly be helped if the Kuhn length was adjustable to appropriate context 

dependent values. Even a simple adjustment at the level of a domain would help (see Refs. [41-43] 

for these definitions). For example, we found that we could obtain the correct structure between P9 

and P9.2 in Fig. 2c (main text) by simply cutting the sequence at P6 and using a smaller Kuhn length 

to fit the sequence from P6 to P9.2 (Ref. [1]). Therefore, varying the Kuhn length is an approach that 

shows measurable promise. This would certainly help biologists if all that is required is to cut up the 

domains and look at the closer details.  
We are currently developing an automated method for selecting the Kuhn length (ξ ). However, 

more information is needed about the relationship between the experimental conditions and the 

Kuhn length. Further study of real RNA should be expected to require some critical thinking on the 

part of the user.   

Third, proteins are often involved with larger structures. There is not a lot we can do about that 

until we have a model to understand protein-RNA interactions. Vsfold4 and 5 have aimed at 
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understanding what the RNA does in the absence of these proteins. Therefore, prediction failure with 

Vsfold4 and 5 may indeed be informative because it can help us understand the contribution from 

protein interactions.  

Finally, we cannot emphasize enough the importance of including partition function 

information and suboptimal structure into these calculations. In this work, we have shown that 

directional folding (5’ to 3’) may be significant in RNA folding problems. Refolding experiments 

reflect different experimental conditions to the natural course of folding. Nevertheless, trapped 

intermediates are observed (and should be expected) regardless of the direction of folding. They are, 

at best, only amplified in refolding experiments. A partition function calculation tells us the 

distribution of states. We have shown that the distribution of similar structures is sorted far better 

using the same strategy used by vsfold4 and 5 (see Refs. [41,42]). That study included rRNA (1534 

nt). From these studies, we saw not only that we could obtain a better selection of the right structure 

from the solution set; we saw that all similar structures tended to group together with that structure. 

This also means that other dominant suboptimal structures can also be detected because they tend to 

appear in groups. This is what we should expect of a distribution of structures in a partition function 

and what we indeed observed. No other approach has ever demonstrated this capability. Therefore, to 

study the states of a riboswitch, this approach offers some advantage in suboptimal structure 

detection.  

The major advantage that vsfold5 offers is that the calculation is stable. By this we mean that 

when the domain size exceeds a certain limit (a function of the Kuhn length), there is no further 

change in the predicted structure [41,42]. This does not mean that vsfold5 picks the correct 

structures in that domain; rather, beyond a certain length, it does not corrupt whatever structure was 

predicted. In general, this means that a user who selects a poor (5’ to 3’) sequence fragment to study 

and a poor Kuhn length can still obtain some useful information from vsfold5; though the utility of 

the calculation is often greatly diminished. This stability is a feature that no other approach can 

claim. Therefore, we have managed to address part of the major issue raised in Ref. [22]. Because 

we have achieved stability, we can now begin to address the other major problems.  
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