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Abstract 

This paper is the first report on the develop-
ment of a protocol that allows rapid and simpli-
fied extraction of total RNA from Artemisia
annua L., an aromatic medicinal plant. This
innovative protocol ensures a consistently
high quantity and good quality of total RNA
without any contamination of polyphenols,
polysaccharides and proteins. The total RNA
obtained is also free of fungal RNA even when
extracted from fungal infested plants. The
extraction buffer used in the proposed modi-
fied protocol was made up of non-hazardous
chemicals. High concentrations of polyphenols
of A. annua L. could be successfully eliminated
and the prepared total RNA could be used for
downstream reactions. 

Introduction

Artemisia, one of the largest genera in the
Asteraceae family, consists of more than 400
species. Some of the species of this genus
have been well studied for their medicinal
value.1 Artemisia annua L. (annual wormwood)
is an aromatic herb native to Asia and Eastern
European countries, and naturalized in
Argentina, India, Vietnam and Brazil.2 A.
annua L. produces artemisinin, a sesquiter-
pene lactone that serves as a potential anti-
malarial drug. Bioactivity studies of
artemisinin have indicated extraordinary
endoperoxide bridges in the chemical struc-
tures which largely contributed to the schizon-
ticide action against Plasmodium falci-
parum.3,4 P. falciparum has started to develop
resistance against chloroquinine and quinine,
the commonly administered drugs. This mul-
tidrug resistant strain began to spread in the
1970s, especially in Southeast Asian countries
such as Myanmar, Vietnam, Thailand and
Malaysia.5 The current production of
artemisinin does not meet the rising world
demand for the bioactive compound and its

derivatives. Furthermore, synthetic artemi -
sinin is expensive and has not been commer-
cialized in the drug market.4,5

During the past decades, in vitro culture
technique has been reported to be successful
for propagation of A. annua L.6,7 However, the
production of artemisinin is still very limit-
ed,8,9 and one of the important setbacks is that
the expression and accumulation of
artemisinin in the plant are easily affected by
environmental, nutritional and physiological
factors. Hence, researchers around the world
are currently working on enhancing the pro-
duction of artemisinin with most of the work
focusing not only on breeding but also on
manipulation of the artemisinin biosynthetic
genes. A detailed knowledge of the artemisinin
biosynthetic pathway, as well as its regulation
and expression in the plant, can certainly help
to provide novel approaches for the manipula-
tion of the expression of key genes in vitro. A
combination of in vitro culture and manipula-
tion of gene expression would be an interest-
ing technique to enhance artemisinin produc-
tion which will be of great benefit in tropical
countries like Malaysia where the climate is
not suitable for cultivation of A. annua L. 

A. annua L. is known for its rich mono- and
sesquiterpene lactones.10,11 High quantity and
good quality of total RNA is needed to construct
a high quality cDNA library of tissue culture-
derived plant materials of A. annua L. There
are many available protocols for total RNA
extraction from plant leaves.12-16 However; it is
difficult to extract total RNA from plants rich in
secondary metabolites due to the interference
of polyphenols and polysaccharides. These sec-
ondary metabolites tend to co-precipitate with
RNA during extraction and inhibit downstream
enzyme modifications of the RNA.17 A method
for total RNA extraction from plants rich in
secondary metabolites has been established
but it involves tedious preparation of the
buffer. Our preliminary studies indicated that
extraction of total RNA of A. annua L. using
commercial kits and the available protocol
established for plants with high secondary
metabolites were not satisfactory.18 Hence,
this paper reports on the development of a
modified protocol for an effective and rapid
extraction of high quantities of good quality
total RNA from A. annua L. 

Materials and Methods

Plant material
Seeds of A. annua L. were collected from

three different clones (TC1, TC2 and
Highland) from Vietnam and cultured in half-
strength MS medium for germination.19 The in
vitro seedlings were maintained in a culture

room at 25±2°C with light intensity of 32.5
µmol m–2 s–1. Some of the seeds were also ger-
minated in polybags and placed in a green-
house. The leaves of 10-week old in vitro
plantlets and seed-derived greenhouse
seedlings were used for total RNA isolation. 

Total RNA isolation
Total RNA isolation was first carried out fol-

lowing two well established protocols:
IQeasyTM Plus Plant RNA Extraction Mini Kit
(iNtRON Technologies) and the standard pro-
tocol for plants with high content of secondary
metabolites using cetyltrimethyl-ammonium
bromide (CTAB) and glacial acetic acid.18 The
efficiency of these two protocols was compared
for A. annua L. 
Total RNA isolation was also carried out

using our modified CTAB protocol. The total
RNA from 0.5 g of A. annua L. cultured leaves
was isolated using 3 mL of sterile extraction
buffer comprised of 3.0% CTAB (w/v), 100 mM
Tris-HCl (pH 8.0), 20 mM EDTA (pH 8.0), 3.0
M NaCl, 2.5% polyvinylpyrrolidone (PVP) K-40
(w/v). The lysis buffer was pre-heated in a
water bath (Grant Instruments, Cambridge,
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USA) at 65°C and 2% β-mercaptoethanol (v/v)
was added into the buffer before pre-heating.
The leaves of tissue-cultured plants were
ground in liquid nitrogen using a sterile mor-
tar and pestle. The fine powdered leaves were
added to the pre-heated buffer using a sterile
spatula. Vigorous vortex (Chilterin) was
applied for 2 min before the mixture was
incubated at 65°C for 30 min. The vortex and
incubating steps were repeated 4-6 times. An
equal amount of chloroform: isoamyl alcohol
(24:1) was added to the mixture and vortexed
vigorously for 2 min until a homogenized
mixture was obtained. The homogenized mix-
ture was then centrifuged (Kubota 6500,
Tokyo) at 10,000 g for 20 min at 4°C. After
centrifugation, two phases were visible. The
aqueous supernatant was transferred into
another centrifuge tube and an equal volume
of chloroform: iso-amyl alcohol (24:1) was
added and vortexed for 2 min. The mixture
was again centrifuged at 13,000 g for 20 min
at 4°C. This separation step was repeated
until there was no flocculent-like layer
between the aqueous and organic phase.
After the final centrifugation, the yellowish
aqueous phase was transferred into a sterile
centrifuge tube and 3M NaOAc was added in
the ratio of 3:10. The tube was inverted a few
times to ensure the solutions were well
mixed. The tube was then stored at 4°C
overnight or for 12-15 h; then centrifuged at
10,000 g for 30 min at 4°C. The supernatant
was discarded and the white pellet was left to
air dry for 1 min. The white pellet was washed
with 250 µL 70% absolute ethanol and rapidly
centrifuged at 13,000 g for 20 min at 4°C. The
washing step was repeated two times before
the pellet was left to air dry for 15 min. The
dry and ethanol-free pellet was dissolved in 50
µL DEPC-treated RNase-free water. The same
procedure was repeated for greenhouse-
grown A. annua L. leaf materials. The leaves
were harvested and immediately wiped thor-
oughly on both surfaces with 70% ethanol and
used for extraction. 

Measurement of total RNA quality
The purity and quantity of total RNA were

quantified with a UV spectrophotometer
(Hitachi U1900) at 230 m, 260 nm and 280 nm
wavelengths, and 2 µL of total RNA was elec-
trophoresed on 1% heat-denaturing agarose
gel.20

mRNA isolation and first strand
cDNA synthesis
Poly(A)+mRNA was isolated from total RNA

from each clone by using the MagneSphere®

Magentic Separation Products (Promega). The
isolated poly(A)+mRNA was reverse tran-
scribed into cDNA using oligo18(dT) primer
and M-MuLV RT enzyme (Promega).20

Detection of DNA contamination
by polymerase chain reaction
amplification
Polymerase chain reaction amplification

was performed using the universal primers
ITS1F and ITS4R.21 The amplification of cDNA
preparation contained 20 ng of cDNA, 1 X
buffer, 2.5 mmol/L MgCl 2 solution, 10 mmol/L
dNTPs in equimolar ratio, 10 umol/L primers,
and 2.5 units of Flexi GoTaq (Promega). The
amplifications were carried out using BioRad
Thermal Cycler.21 The amplified products were
electrophoresed using 1% agarose gel and run
at 100V for 50 min. The gel was then stained
with 1% ethidium bromide and destained in
sterile distilled water. The gel was viewed and
documented using Gel Doc XR System (Bio-
Rad).

Results 

Extraction of total RNA using the commer-
cial kit gave a low yield (13.34-16.42 µg g1 FW)
and the preparation was contaminated with

polyphenols and polysaccharides, as indicated
by the A260/230 reading which ranged between
0.76 and 0.81. It also showed it was contami-
nated with protein, as indicated by the A260/280
which was not within the normal range of 1.8-
2.0. Using the standard protocol for plants with
high secondary metabolites,18 the yield of total
RNA acquired for 0.5 g of fresh leaves was very
much lower than that obtained using  the com-
mercial kit protocol (1.3-9.7 µg g–1 FW) for the
three clones of A. annua L. Polyphenol contam-
inations were still found in the RNA prepara-
tions using this standard protocol of CTAB and
glacial acetic acid, although RNA purity read-
ing A260/280 indicated the preparations were free
of other protein contamination (Table 1). 
However, high quality and good yield of total

RNA could be successfully obtained from tis-
sue-cultured A. annua L. using our modified
CTAB protocol. The extracted total RNA ranged
from 33 to 54 µg g–1 FW for the three clones.
This indicates that as little as 0.5 g fresh leaf
material is sufficient to yield enough total RNA
for downstream applications such as reverse
transcription to first strand and PCR. As for the
three clones using the proposed modified
CTAB method, the A260/230 were between 2.11
and 2.56, higher than 2.0, indicating absence
of polysaccharide or polyphenol contamina-
tion. For A260/280 readings, the values were
between 1.89 and 1.96, indicating the total
RNA preparation using the method described
above was free of protein contamination
(Table 1). Electrophoresis of total RNA on heat
denaturing gel showed two sharp bands, evi-
dence of the integrity of the total RNA extract-
ed (Figure 1).
The standard protocol for total RNA extrac-

tion and isolation applied to the greenhouse
clones of A. annua L. gave reasonably high
yields but the RNA was still contaminated with
polyphenol, polysaccharides and proteins. Our
modified CTAB protocol again proved that good
yields of total RNA (37.92-43.38 µg g–1 FW)
without any contaminants could be obtained

Article

Table 1. Yield of RNA and absorbance ratios from three different clones for three different methods of total RNA extraction.

Extraction method
IQeasyTM Plus Plant RNA Extraction Mini Kit CTAB and glacial acetic acid Modified CTAB 

In vitro clone Absorbance ratios RNA yield Absorbance ratios RNA yield Absorbance ratios RNA yield 
OD 260/230 OD 260/280 (µg g-1 FW) OD 260/230 OD 260/280 (µg g-1 FW) OD 260/230 OD 260/280 (µg g-1 FW)

TC1 0.76 1.19 13.34 1.53 1.84 9.7 2.28 2.03 37.92
TC2 0.81 1.15 16.42 1.01 1.86 1.3 2.13 1.85 43.38
Highland 0.77 1.21 14.84 1.28 1.92 3.6 2.50 1.90 39.72
CTAB, cetyltrimethyl-ammonium bromide; OD, optical density.
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from the greenhouse-grown A. annua L. leaves
(Table 2). Heat-denatured gel electrophoresis
of total RNA extracted from greenhouse-grown
A. annua L. clones using the modified protocol
showed two distinct bands, indicating high
integrity of RNA (Figure 2). 

Discussion

A. annua L. is reported to be rich in second-
ary metabolites which can hamper total RNA
preparation and inhibit further downstream
applications if not eliminated during total RNA
extraction. Available commercial kits like
IQeasyTM Plus Plant RNA Extraction Mini Kit
(iNtRON Technologies) or other protocols
based on guanidium isothiocyanate,12,15 or
cesium chloride,13 are very often used for total
RNA preparations from plant material.
However, the stated methods have been shown
to produce low quality of total RNA contaminat-
ed with polyphenols and inhibitors that ham-
per the amplification process during PCR.18

The yellow pellets produced in the present
investigation using the commercial kit indicat-
ed presence of impurities in the total RNA
preparation. Similarly, the conventional
method proposed for medicinal plants,18 which
promised elimination of secondary metabolites
and polyphenols in RNA preparation using
insoluble polyvinyl polypyrrolidone (PVPP),
gave low yields and poor quality of RNA from A.
annua L. The yellow pellets produced after
washing at the end of the protocol indicated
the presence of polyphenols. Hence this
showed that the use of PVPP did not success-
fully eliminate polyphenols from the total RNA
preparations of A. annua L. When not fully sep-
arated from the total RNA, polyphenols will
inhibit the sensitive downstream reactions
like PCR. The total RNA of A. annua L. isolated
using our proposed modified protocol was free
of contamination and they could be used effec-
tively in the PCR. In our modified protocol, a
high amount of PVP and β-mercaptoethanol
added to the lysis buffer successfully eliminat-
ed polyphenols and polysaccharide that were

present in A. annua L. leaves.22-24 Using our
proposed modified protocol, an almost color-
less pellet was produced after overnight precip-
itation with sodium acetate which was found
to ensure better elimination of co-precipitated
polysaccharides, which are normally used in
isolation of total RNA, compared to lithium
chloride. The clear pellets produced with our
protocol further indicated that the prepara-
tions were free of polysaccharides. Chloride
ions in lithium chloride have been found to
suppress RNA-dependent DNA polymerases in
downstream reactions.25

Most of the A. annua L. plants that were
grown in the greenhouse were found to be
infested with fungi. In order to confirm the
presence of fungal RNA in the total RNA prepa-
ration, PCR was run with fungal-specific inter-
nal transcribed spacer (ITS) primers, ITS1F
and ITS4R to ensure the purity of the isolated
RNA.21 The results obtained from PCR of first
strand cDNA derived from the total RNA of the
greenhouse-grown A. annua L. clones using
the standard protocol indicated the presence of
fungal RNA. The PCR profile was run on the
total RNA isolated using our modified protocol
and did not show any cDNA amplification,
which indicates absence of fungal RNA con-
tamination (Figure 3). The absence of fungal
RNA in the total RNA preparation using modi-
fied protocol might be due to the repeated
heating of the leaf samples at 65°C. Fungal
RNA has been reported to be sensitive to high
temperature and the continuous exposure of
leaf samples to high temperature in the modi-
fied protocol might be the cause of fungal RNA
denaturation. It was reported that fungal RNA
were made up of mostly 23S and 16S, and when
exposed to high temperature, nicking occurred
and they were denatured to smaller sub-
units.26-28 These small subunits (which were
mainly proteins) were then eliminated from
the total RNA preparations during the chloro-
fom/isoamyl alcohol separation stage. Hence,
the total RNA isolated using the modified pro-
tocol did not show cDNA amplification in the
PCR. A high concentration with reduced vol-
ume of extraction buffer was used to extract
total RNA in order to reduce the amount of con-
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Table 2. Yield of RNA and absorbance ratios from three different greenhouse-grown clones for two different methods of total RNA
extraction.

Extraction method
CTAB and glacial acetic acid Modified CTAB 

Greenhouse clone Absorbance ratios RNA yield (µg g-1 FW) Absorbance ratios RNA yield (µg g-1 FW)
OD 260/230 OD 260/280 OD 260/230 OD 260/280

TC1 0.45 3.74 10.92 2.15 1.86 54.00
TC2 1.47 2.88 40.98 2.21 1.96 40.81
Highland 1.36 1.40 67.32 2.08 1.81 33.00
CTAB, cetyltrimethyl-ammonium bromide; OD, optical density.

Figure 1. Heat-denatured gel electrophore-
sis of total RNA extracted from in vitro A.
annua L. clones using three different
methods. M, RiboRuler™ RNA Ladders
(Fermentas); 1-3, TC1, TC2 and Highland
RNA using IQeasy™ Plus Plant RNA
Extraction Mini Kit; 4-6, TC1, TC2 and
Highland RNA using cetyltrimethyl-
ammonium bromide (CTAB) plus glacial
acetic acid; 7-9, TC1, TC2 and Highland
RNA using modified CTAB. 

Figure 2. Heat-denatured gel electrophore-
sis of total RNA extracted from green-
house-grown A. annua L. clones using two
different methods. 1-3, TC1, TC2 and
Highland RNA using modified
cetyltrimethyl-ammonium bromide
(CTAB); 4-6, TC1, TC2 and Highland RNA
using CTAB and glacial acetic acid.

Figure 3. Polymerase chain reaction pro-
files of first strand cDNA amplified from
greenhouse-grown A. annua L. RNA iso-
lated through modified cetyltrimethyl-
ammonium bromide (CTAB) protocol (1-
3) and CTAB plus glacial acetic acid
method (4-6) using universal primers
ITS1F and ITS4R. 1 and 4, TC1; 2 and 5,
TC2; 3 and 6, Highland; M, 100bp DNA
Marker (Fermentas).
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taminating polysaccharides.13,24,25 Use of
DPEC-treated double distilled water in the
modified protocol eliminated ribonucleases
which would degrade RNA during total RNA
preparation. Spraying RNAse Quiet
(Fermentas) before and during the total RNA
extraction also promotes the elimination of
ribonucleases. Furthermore, fewer centrifuga-
tion steps were used in the modified protocol
compared to CTAB plus glacial acetic acid, and
this reduced the amount of total RNA lost dur-
ing total RNA extractions. Washing with
absolute ethanol was repeated twice to ensure
complete removal of CTAB from total RNA. The
simple CTAB protocol that used non-hazardous
chemicals further simplifies the modified pro-
tocol and is helpful in obtaining high quantity
and good quality total RNA from in vitro and
greenhouse-grown leaves of A. annua L. 
The high yield and quality of the extracted

total RNA proved that the modified CTAB proto-
col could be effectively used for extraction from
delicate leaf samples such as tissue-cultured A.
annua L.

Conclusions

Our modified CTAB protocol ensured isola-
tion of high quantity and good quality total
RNA from A. annua L., a medicinal plant con-
taining large amounts of secondary metabo-
lites.  
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